Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
A wireless device can perform non-line-of-sight detection. The wireless device may establish a wireless link with another wireless device using a wireless channel. The wireless device may perform one or more channel measurements for the wireless channel. The wireless device may determine whether a line-of-sight path is available for the wireless channel based at least in part on the one or more channel measurements. The wireless device may determine whether to trigger beamforming selection, antenna selection, and/or any other link maintenance operations based at least in part on the determined line-of-sight availability.
Abstract:
A wireless device can perform non-line-of-sight detection. The wireless device may establish a wireless link with another wireless device using a wireless channel. The wireless device may perform one or more channel measurements for the wireless channel. The wireless device may determine whether a line-of-sight path is available for the wireless channel based at least in part on the one or more channel measurements. The wireless device may determine whether to trigger beamforming selection, antenna selection, and/or any other link maintenance operations based at least in part on the determined line-of-sight availability.
Abstract:
A wireless communication system is presented for multiple wireless technology coexistence in a mobile device. A method according to this application might include obtaining one or more transmit allocation parameters for a wireless transmission via a first radio technology at a first wireless processor and the preparing to receive wireless data via a second radio technology at a second wireless processor. Next, the exemplary method might request that the wireless transmission be deferred, followed by deciding whether to grant the deferral request based at least on the one or more transmit allocation parameters.
Abstract:
A wireless electronic device having first and second baseband processors is provided. In one suitable arrangement, radio-frequency power splitters and adjustable low noise amplifiers may be form in the receive paths. The use of power splitters allow signals associated with the first and second baseband processors to be received in parallel. In another suitable arrangement, radio-frequency switches are used in place of the power splitters. The states of the switches may be controlled using at least one of the first and second baseband processors. The use of switches instead of power splitters requires that wake periods associated with the first baseband processor and wake periods associated with the second baseband processor are non-overlapping. To ensure minimal wake period collision, a wake period associated with the second baseband processor may be positioned at a midpoint between two successive wake periods associated with the first baseband processor.
Abstract:
A wireless communication system is presented for multiple wireless technology coexistence in a mobile device. A method according to this application might include obtaining one or more transmit allocation parameters for a wireless transmission via a first radio technology at a first wireless processor and the preparing to receive wireless data via a second radio technology at a second wireless processor. Next, the exemplary method might request that the wireless transmission be deferred, followed by deciding whether to grant the deferral request based at least on the one or more transmit allocation parameters.
Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
A wireless communication system is presented for multiple wireless technology coexistence in a mobile device. A method according to this application might include obtaining one or more transmit allocation parameters for a wireless transmission via a first radio technology at a first wireless processor and the preparing to receive wireless data via a second radio technology at a second wireless processor. Next, the exemplary method might request that the wireless transmission be deferred, followed by deciding whether to grant the deferral request based at least on the one or more transmit allocation parameters.
Abstract:
A wireless communication system is presented for multiple wireless technology coexistence in a mobile device. A method according to this application might include obtaining one or more transmit allocation parameters for a wireless transmission via a first radio technology at a first wireless processor and the preparing to receive wireless data via a second radio technology at a second wireless processor. Next, the exemplary method might request that the wireless transmission be deferred, followed by deciding whether to grant the deferral request based at least on the one or more transmit allocation parameters.
Abstract:
A system and method for wireless device testing. The system includes a reverberation chamber (RC) and a downlink channel emulator. A wireless device is placed within the RC. Probe antennas are positioned within the RC. The downlink (DL) channel emulator couples to the probe antennas. The DL channel emulator is configured to: (a) receive downlink stimulus signals; and (b) generate downlink intermediate signals based on the downlink stimulus signals in order to emulate desired downlink channel characteristics. The probe antennas are configured to respectively transmit the downlink intermediate signals into the RC for reception by the wireless device. The system may also include an uplink channel emulator, which receives uplink transmit signals from the RC, and generates uplink terminal signals based on the uplink transmit signals in order to emulate desired uplink channel characteristics. The uplink transmit signals may be used to evaluated the performance of the wireless device.