Abstract:
In a first aspect, a rotary vacuum-chuck is provided that may hold a substrate such as a silicon wafer for rotation. The vacuum-chuck includes a hollow rotary shaft and a chuck mounted on the hollow rotary shaft and having a surface adapted to support a substrate. The chuck has one or more openings in fluid communication with the hollow rotary shaft. A venturi is formed near an end of the hollow rotary shaft to apply vacuum to the hollow rotary shaft and the openings in the chuck surface. No seal is required between the end of the hollow rotary shaft and a surrounding stationary block.
Abstract:
A rotary vacuum-chuck mounts a substrate such as a silicon wafer for rotation. The vacuum-chuck includes a hollow rotary shaft and a chuck mounted on the hollow rotary shaft and having a surface adapted to support a substrate, the surface having one or more openings in fluid communication with the hollow rotary shaft. A vacuum generator evacuates the hollow rotary shaft and the one or more openings so as to vacuum chuck a substrate to the chuck surface. A labyrinthine gap is defined between a first member that rotates with the hollow rotary shaft and a second member that is stationary. A fluid in the labyrinthine gap provides a gas-tight seal between the first and second members.
Abstract:
A non-contact apparatus and method for removing a metal layer from a substrate are provided. The apparatus includes a rotatable anode substrate support member configured to support a substrate in a face-up position and to electrically contact the substrate positioned thereon. A pivotally mounted cathode fluid dispensing nozzle assembly positioned above the anode substrate support member is also provided. A power supply in electrical communication with the anode substrate support member and the cathode fluid dispensing nozzle is provided, and a system controller configured to regulate at least one of a rate of rotation of the anode substrate support member, a radial position of the cathode fluid dispensing nozzle, and an output power of the power supply is provided. The method provides for the removal of a metal layer from a substrate by rotating the substrate in a face up position on a rotatable substrate support member. A cathode fluid dispensing nozzle is positioned over a central portion of the substrate and a metal removing solution is dispensed from the cathode fluid dispensing nozzle onto the central portion of the substrate. An electrical bias is applied between the substrate and the cathode fluid dispensing nozzle, which operates to deplate the metal layer below the fluid dispensing nozzle.
Abstract:
In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
Abstract:
A method and apparatus is provided that may protect a fragile component (such as a quartz plate) positioned within a megasonic tank from impact by falling objects. The megasonic tank may include a barrier (such as one or more extended rollers, quartz bars, or a net) that is configured to protect the fragile component.