Abstract:
A wafer chuck is provided, having a wafer chucking surface, and a plunger consisting either of a body that extends at least partially along the outer perimeter of the wafer chucking surface, or a plurality of pins positioned outside the wafer chucking surface. The plunger may be normally biased to extend past the wafer chucking surface and/or may be adapted not to rotate with the wafer chucking surface. The plunger bias may be achieved via one or more vacuum bellows.
Abstract:
Embodiments of the invention generally provide an electrochemical plating system. The plating system includes a substrate loading station positioned in communication with a mainframe processing platform, at least one substrate plating cell positioned on the mainframe, at least one substrate bevel cleaning cell positioned on the mainframe, and a stacked substrate annealing station positioned in communication with at least one of the mainframe and the loading station, each chamber in the stacked substrate annealing station having a heating plate, a cooling plate, and a substrate transfer robot therein.
Abstract:
In a first aspect, a rotary vacuum-chuck is provided that may hold a substrate such as a silicon wafer for rotation. The vacuum-chuck includes a hollow rotary shaft and a chuck mounted on the hollow rotary shaft and having a surface adapted to support a substrate. The chuck has one or more openings in fluid communication with the hollow rotary shaft. A venturi is formed near an end of the hollow rotary shaft to apply vacuum to the hollow rotary shaft and the openings in the chuck surface. No seal is required between the end of the hollow rotary shaft and a surrounding stationary block.
Abstract:
A method and an apparatus is provided that may fix a point at which an etchant or a fluid sprayed from a nozzle impacts a substrate. By fixing a first angle measured between the inventive nozzle and a substrate support and fixing a process height of a nozzle relative to a substrate support, a second angle, measured between a fluid sprayed from the nozzle and a line tangent to a substrate support, may vary without affecting the fluid impact point.
Abstract:
Embodiments of the invention generally provide a substrate spin rinse dry cell that may be used in a semiconductor processing system. The cell generally includes a cell body defining an interior processing volume, and a rotatable substrate support member positioned in the processing volume. The rotatable substrate support member includes a rotatable hub assembly having a plurality of upstanding substrate engaging members extending therefrom, and a central member positioned radially inward of the plurality of upstanding substrate engaging members, the central member having a plurality of backside fluid dispensing nozzles and at least one backside gas dispensing nozzle positioned thereon. The cell further includes at least one frontside fluid dispensing nozzle positioned to dispense a rinsing fluid onto an upper surface of a substrate supported by the substrate support member, and at least one frontside gas dispensing nozzle positioned to dispense a drying gas into the processing volume, the drying gas being directed toward the upper substrate surface.
Abstract:
In a first aspect, a system is provided that includes (1) a substrate support adapted to hold and rotate a substrate; (2) a source of fluid adapted to supply fluid to a surface of a substrate held by the substrate support; and (3) a shield positioned to capture fluid supplied by the source of fluid and displaced from a substrate held and rotated by the substrate support. The shield includes a radiused surface adapted to carry the captured fluid away from the substrate held by the substrate support. Apparatus and methods in accordance with this and other aspects also are provided.