摘要:
An object of the present invention is to provide a glass for chemical strengthening which is capable of improving strength as compared with an ordinary soda lime silicate glass even when the same chemical strengthening treatment as that in a conventional process is applied and has good devitrification characteristics, a chemically strengthened glass using the glass for chemical strengthening, and a method for producing the chemically strengthened glass. The present invention provides a glass for chemical strengthening having a specific glass composition described in the present specification.
摘要:
To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.
摘要:
To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.
摘要:
To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.
摘要:
A glass for chemical strengthening contains, in mole percentage on an oxide basis, 58 to 72% of SiO2, 7 to 18% of Al2O3, 1% or more of B2O3, 0 to 4% of P2O5, 5 to 16% of Li2O, 0 to 7% of Na2O, 0 to 2% of K2O, 0 to 6% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 15% of BaO, 0 to 10% of ZnO, 0 to 1% of TiO2, and 0 to 2% of ZrO2. A value of X is 30000 or more. The value of X is calculated based on the formula, X=SiO2×329+Al2O3×786+B2O3×627+P2O5×(−941)+Li2O×927+Na2O×47.5+K2O×(−371)+MgO×1230+CaO×1154+SrO×733+ZrO2×51.8, by using the contents in mole percentage on an oxide basis of components.
摘要:
The present invention relates to a chemically strengthened glass having a first surface and a second surface facing the first surface, and having a compressive stress layer provided on the first surface and the second surface, in which a depth of compressive stress DOL1 (μm) of the first surface is larger than a depth of compressive stress DOL2 (μm) of the second surface, and a stress distribution in a sheet thickness direction of the chemically strengthened glass satisfies the following relational expression (1) and the following relational expression (3): CT1/CT2≦0.8 (1) and CT1×L1/2≦30 (MPa·mm1/2) (3).
摘要:
To provide a process for producing a chemically tempered glass whereby it is possible to increase the surface compressive stress. A process for producing a chemically tempered glass, which comprises holding a glass at a temperature of at least the strain point minus 40° C. and at most the strain point plus 70° C. for at least 30 minutes for heat treatment, and thereafter, immersing it in a molten salt for ion exchange without allowing the temperature to exceed the strain point plus 70° C.
摘要:
To provide glass to be used for chemically tempered glass, of which the strength is less likely to be reduced even when indentations are formed thereon. Glass for chemical tempering, which comprises, as represented by mole percentage based on oxides, from 62 to 68% of SiO2, from 6 to 12% of Al2O3, from 7 to 13% of MgO, from 9 to 17% of Na2O, and from 0 to 7% of K2O, wherein the difference obtained by subtracting the content of Al2O3 from the total content of Na2O and K2O is less than 10%, and when ZrO2 is contained, its content is at most 0.8%. Chemically tempered glass obtained by chemically tempering such glass for chemical tempering. Such chemically tempered glass has a compressive stress layer formed on the glass surface, which has a thickness of at least 30 μm and a surface compressive stress of at least 550 MPa.
摘要翻译:提供用于化学钢化玻璃的玻璃,其中即使在其上形成凹痕时其强度也不太可能降低。 用于化学回火的玻璃,其以由氧化物的摩尔百分数表示,SiO 2为62〜68%,Al 2 O 3为6〜12%,MgO为7〜13%,Na 2 O为9〜17% 0〜7%的K2O,其中通过从Na 2 O和K 2 O的总含量中减去Al 2 O 3的含量而得到的差小于10%,当含有ZrO 2时,其含量为0.8%以下。 通过化学回火这种玻璃进行化学回火获得的化学强化玻璃。 这种化学强化玻璃具有形成在玻璃表面上的压应力层,其具有至少30μm的厚度和至少550MPa的表面压应力。
摘要:
Provided is an optical glass having a high refractive index, a low density, and good manufacturing properties. An optical glass having: a refractive index (nd) of 1.68 to 1.85; a density (d) of 4.0 g/cm3 or less; and a temperature where a viscosity of glass becomes log η=2 of 950 to 1200° C., and an optical component using the optical glass are provided. This optical glass has the high refractive index, the low density, and the good manufacturing properties, and is suitable as the optical glass of wearable equipment, for a vehicle mounting, for a robot mounting, and so on.
摘要:
To provide a method for producing chemically tempered glass, whereby frequency of replacement of the molten salt can be reduced. A method for producing chemically tempered glass, which comprises repeating ion exchange treatment of immersing glass in a molten salt, wherein the glass comprises, as represented by mole percentage, from 61 to 77% of SiO2, from 1 to 18% of Al2O3, from 3 to 15% of MgO, from 0 to 5% of CaO, from 0 to 4% of ZrO2, from 8 to 18% of Na2O and from 0 to 6% of K2O; SiO2+Al2O3 is from 65 to 85%; MgO+CaO is from 3 to 15%; and R calculated by the following formula by using contents of the respective components, is at least 0.66: R=0.029×SiO2+0.021×Al2O3+0.016×MgO−0.004×CaO+0.016×ZrO2+0.029×Na2O+0×K2O−2.002
摘要翻译:提供一种生产化学钢化玻璃的方法,从而可以降低熔融盐的更换频率。 一种生产化学强化玻璃的方法,其包括将浸入玻璃在熔融盐中重复进行离子交换处理,其中所述玻璃包含以摩尔百分数表示的61至77%的SiO 2,1至18%的Al 2 O 3, 3〜15%的MgO,0〜5%的CaO,0〜4%的ZrO 2,8〜18%的Na 2 O和0〜6%的K 2 O; SiO 2 + Al 2 O 3为65〜85%。 MgO + CaO为3〜15%。 R为0.066×SiO 2 + 0.021×Al 2 O 3 + 0.016×MgO-0.004×CaO + 0.016×ZrO 2 + 0.029×Na 2 O + 0×K 2 O + 2.002