Abstract:
Droplet generators, such as used in an EUV radiation source, and associated EUV radiation sources and lithographic apparatuses. A droplet generator can include a nozzle assembly to emit the fuel as droplets, the nozzle assembly being within a pressurized environment at substantially the same pressure as the fuel pressure within the droplet generator. A droplet generator can include an actuator in contact with and biased against a pump chamber by means of a biasing mechanism having an actuator support biased against the actuator. The actuator acts on the fuel within the pump chamber to create droplets. The actuator support has a material with a greater coefficient of thermal expansion than its surrounding structure, such that it is moveable within the surrounding structure at ambient temperature, but expands against the surrounding structure at an operating temperature, so as to clamp the actuator support against the surrounding structure at the operating temperature.
Abstract:
Droplet generators, such as used in an EUV radiation source, and associated EUV radiation sources and lithographic apparatuses. A droplet generator can include a nozzle assembly to emit the fuel as droplets, the nozzle assembly being within a pressurized environment at substantially the same pressure as the fuel pressure within the droplet generator. A droplet generator can include an actuator in contact with and biased against a pump chamber by means of a biasing mechanism having an actuator support biased against the actuator. The actuator acts on the fuel within the pump chamber to create droplets. The actuator support has a material with a greater coefficient of thermal expansion than its surrounding structure, such that it is moveable within the surrounding structure at ambient temperature, but expands against the surrounding structure at an operating temperature, so as to clamp the actuator support against the surrounding structure at the operating temperature.
Abstract:
A target material supply apparatus for an extreme ultraviolet (EUV) light source includes a tube that includes a first end, a second end, and a sidewall defined between the first and second ends. At least a portion of an outer surface of the tube includes an electrically insulating material, the first end receives a pressurized target material, and the second end defines an orifice through which the pressurized target material passes to produce a stream of target material droplets. The target material supply apparatus also includes an electrically conductive coating on the outer surface of the tube. The coating is configured to electrically connect the outer surface of the tube to ground to thereby reduce surface charge on the outer surface.
Abstract:
A target material supply apparatus for an extreme ultraviolet (EUV) light source includes a tube that includes a first end, a second end, and a sidewall defined between the first and second ends. At least a portion of an outer surface of the tube includes an electrically insulating material, the first end receives a pressurized target material, and the second end defines an orifice through which the pressurized target material passes to produce a stream of target material droplets. The target material supply apparatus also includes an electrically conductive coating on the outer surface of the tube. The coating is configured to electrically connect the outer surface of the tube to ground to thereby reduce surface charge on the outer surface.
Abstract:
Systems (and methods therefor) for generating EUV radiation that comprise an arrangement producing a laser beam directed to an irradiation region and a droplet source. The droplet source includes a fluid exiting an orifice and a sub-system having an electro-actuatable element producing a disturbance in the fluid. The electro-actuatable element is driven by a first waveform to produce droplets for irradiation to generate the EUV radiation, the droplets produced by the first waveform having differing initial velocities causing at least some adjacent droplets to coalesce as the droplets travel to the irradiation region, and a second waveform, different from the first waveform, to dislodge contaminants from the orifice.
Abstract:
A target material supply apparatus for an extreme ultraviolet (EUV) light source includes a tube that includes a first end, a second end, and a sidewall defined between the first and second ends. At least a portion of an outer surface of the tube includes an electrically insulating material, the first end receives a pressurized target material, and the second end defines an orifice through which the pressurized target material passes to produce a stream of target material droplets. The target material supply apparatus also includes an electrically conductive coating on the outer surface of the tube. The coating is configured to electrically connect the outer surface of the tube to ground to thereby reduce surface charge on the outer surface.
Abstract:
A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.
Abstract:
Systems (and methods therefor) for generating EUV radiation that comprise an arrangement producing a laser beam directed to an irradiation region and a droplet source. The droplet source includes a fluid exiting an orifice and a sub-system having an electro-actuatable element producing a disturbance in the fluid. The electro-actuatable element is driven by a first waveform to produce droplets for irradiation to generate the EUV radiation, the droplets produced by the first waveform having differing initial velocities causing at least some adjacent droplets to coalesce as the droplets travel to the irradiation region, and a second waveform, different from the first waveform, to dislodge contaminants from the orifice.
Abstract:
Methods and apparatus for producing irradiation targets in an extreme ultraviolet (EUV) light source having an irradiation target generating system that includes a nozzle configured for ejecting droplets of a target material, and a subsystem having an electro-actuable element producing a modulation waveform to cause disturbance to the droplets thereby causing at least some of the droplets to coalesce into irradiation targets. There is included a laser producing a beam for irradiating the irradiation targets to generate an EUV-producing plasma, wherein the electro-actuable element is biased against the nozzle to enable transfer of the disturbance to the droplets while permitting relative movement between the electro-actuable element and the nozzle.
Abstract:
A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.