Abstract:
Aspects of the subject disclosure may include, for example, a non-transitory machine-readable storage medium comprising executable instructions that, when executed by a processing system including a processor, perform operations comprising: identifying a first plurality of cells as a controlled group of cells; determining, for each cell of the controlled group of cells, an average number of allocated physical resource blocks; determining, for each cell of the controlled group of cells, a total number of physical resource blocks available to carry payload traffic; determining, for each cell of the controlled group of cells, a metric equal to: (a) the average number of allocated physical resource blocks of the cell divided by (b) the total number of physical resource blocks of the cell available to carry payload traffic; and performing a load balancing of the controlled group of cells based upon the metric. Other embodiments are disclosed.
Abstract:
A method, computer readable medium and apparatus for calculating a capacity for high speed packet access data in a link in a communications network are disclosed. For example, the method initializes parameters associated with streaming data, long elastic data and short elastic data, determines, via a processor, a capacity value such that a quality of service metric is met for the streaming data, the long elastic data and the short elastic data and provisions the link with the capacity value if the quality of service metric is met.
Abstract:
In one example, a method performed by a processing system including at least one processor includes creating a geospatial model of an environment in which a cellular network is to be deployed, transforming, for each cellular antenna of a proposed antenna layout of the cellular network, a radiation pattern of the each cellular antenna into a signal strength array, to create a plurality of signal strength arrays, augmenting, for each signal strength array of the plurality of signal strength arrays, the each signal strength array with at least one parameter of a corresponding cellular antenna of the proposed antenna layout and at least one value describing the environment in which the cellular network is to be deployed, and estimating a coverage of the proposed antenna layout based on the signal strength array, as augmented, using a machine learning model.
Abstract:
The disclosed technology is directed towards load balancing in an adaptive and automated way for wireless mobility networks to improve the overall harmonic-average UE throughput within each controlled group of cells (e.g., different frequency carriers serving a sector of a base station). A load balancer (e.g., analytics component) obtains various device traffic data including throughput data for cells of a group. Pairs of cells in a group (sharing a site and face) can be selected based on satisfying various criteria, with estimated throughput gain achieved by changing the handoff rates between the cell pairs. The technology iteratively repeats the overall process, driving a system to an optimal equilibrium.
Abstract:
Aspects of the subject disclosure may include, for example, calculating a respective first quality metric for each cell of a plurality of cells included in a network, calculating a respective second quality metric for each cell of the plurality of cells, calculating a capacity of each cell of the plurality of cells in accordance with the first quality metric for the cell and the second quality metric for the cell, and allocating traffic of the network amongst the plurality of cells in accordance with the respective capacity of each cell of the plurality of cells. Other embodiments are disclosed.
Abstract:
Distribution of traffic to cells in a communication network can be controlled. A distribution management component (DMC) can determine overall device traffic throughput for cells of a sector that satisfy a defined traffic throughput criterion relating to a harmonic mean of the device traffic throughput for the cells to desirably enhance or maximize the harmonic mean of the overall device traffic throughput. Based on the overall device traffic throughput for the cells, the DMC can determine whether to adjust a characteristic associated with a cell of the cells to facilitate adjusting distribution of device traffic among the cells of the sector to achieve desirable load balancing of traffic by the sector and in the network. Load balancing can be achieved by controlling respective parameters with regard to communication devices that are in idle mode or connected mode to facilitate directing communication devices and associated traffic to desired cells.
Abstract:
Distribution of traffic to cells in a communication network can be controlled. User equipment (UE) can perform measurements regarding signal quality with cells and communicate measurement information and a connection request to a source cell. The source cell can establish an initial connection with the UE. Meanwhile, the UE can perform additional measurements and communicate additional measurement information to the source cell. A distribution management component (DMC) can analyze the measurement information and cell-related information and determine whether to redirect the UE from the source cell to a target cell based on the analysis results. If the DMC determines that the UE is to be redirected to the target cell, the DMC can release the connection to the source cell and communicate a redirect message that includes target cell information to the UE, and the UE can send a connection request to the target cell.
Abstract:
A method, computer readable medium and apparatus for calculating a capacity for high speed packet access data in a link in a communications network are disclosed. For example, the method initializes parameters associated with streaming data, long elastic data and short elastic data, determines, via a processor, a capacity value such that a quality of service metric is met for the streaming data, the long elastic data and the short elastic data and provisions the link with the capacity value if the quality of service metric is met.
Abstract:
Aspects of the subject disclosure may include, for example, calculating a respective first quality metric for each cell of a plurality of cells included in a network, calculating a respective second quality metric for each cell of the plurality of cells, calculating a capacity of each cell of the plurality of cells in accordance with the first quality metric for the cell and the second quality metric for the cell, and allocating traffic of the network amongst the plurality of cells in accordance with the respective capacity of each cell of the plurality of cells. Other embodiments are disclosed.
Abstract:
The disclosed technology is directed towards load balancing in an adaptive and automated way for wireless mobility networks to improve the overall harmonic-average UE throughput within each controlled group of cells (e.g., different frequency carriers serving a sector of a base station). A load balancer (e.g., analytics component) obtains various device traffic data including throughput data for cells of a group. Pairs of cells in a group (sharing a site and face) can be selected based on satisfying various criteria, with estimated throughput gain achieved by changing the handoff rates between the cell pairs. The technology iteratively repeats the overall process, driving a system to an optimal equilibrium.