Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, determining identified impressions that are detected from consumption data collected from a group of media processors where the identified impressions represent viewing of selected content and where the consumption data indicates channel tuning events at the group of media processors including changing of channels, applying a ridge regression analysis to the identified impressions to determine a predicted number of target impressions per advertisement slot, and generating a media plan based on a ratio of an advertisement slot cost to the predicted number of target impressions per advertisement slot. Other embodiments are disclosed.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for combining frame and segment level processing, via temporal pooling, for phonetic classification. A frame processor unit receives an input and extracts the time-dependent features from the input. A plurality of pooling interface units generates a plurality of feature vectors based on pooling the time-dependent features and selecting a plurality of time-dependent features according to a plurality of selection strategies. Next, a plurality of segmental classification units generates scores for the feature vectors. Each segmental classification unit (SCU) can be dedicated to a specific pooling interface unit (PIU) to form a PIU-SCU combination. Multiple PIU-SCU combinations can be further combined to form an ensemble of combinations, and the ensemble can be diversified by varying the pooling operations used by the PIU-SCU combinations. Based on the scores, the plurality of segmental classification units selects a class label and returns a result.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for performing speaker verification. A system configured to practice the method receives a request to verify a speaker, generates a text challenge that is unique to the request, and, in response to the request, prompts the speaker to utter the text challenge. Then the system records a dynamic image feature of the speaker as the speaker utters the text challenge, and performs speaker verification based on the dynamic image feature and the text challenge. Recording the dynamic image feature of the speaker can include recording video of the speaker while speaking the text challenge. The dynamic feature can include a movement pattern of head, lips, mouth, eyes, and/or eyebrows of the speaker. The dynamic image feature can relate to phonetic content of the speaker speaking the challenge, speech prosody, and the speaker's facial expression responding to content of the challenge.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for combining frame and segment level processing, via temporal pooling, for phonetic classification. A frame processor unit receives an input and extracts the time-dependent features from the input. A plurality of pooling interface units generates a plurality of feature vectors based on pooling the time-dependent features and selecting a plurality of time-dependent features according to a plurality of selection strategies. Next, a plurality of segmental classification units generates scores for the feature vectors. Each segmental classification unit (SCU) can be dedicated to a specific pooling interface unit (PIU) to form a PIU-SCU combination. Multiple PIU-SCU combinations can be further combined to form an ensemble of combinations, and the ensemble can be diversified by varying the pooling operations used by the PIU-SCU combinations. Based on the scores, the plurality of segmental classification units selects a class label and returns a result.
Abstract:
Methods, systems, and products adapt recommender systems with pairwise feedback. A pairwise question is posed to a user. A response is received that selects a preference for a pair of items in the pairwise question. A latent factor model is adapted to incorporate the response, and an item is recommended to the user based on the response.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for learning latent representations for natural language tasks. A system configured to practice the method analyzes, for a first natural language processing task, a first natural language corpus to generate a latent representation for words in the first corpus. Then the system analyzes, for a second natural language processing task, a second natural language corpus having a target word, and predicts a label for the target word based on the latent representation. In one variation, the target word is one or more word such as a rare word and/or a word not encountered in the first natural language corpus. The system can optionally assigning the label to the target word. The system can operate according to a connectionist model that includes a learnable linear mapping that maps each word in the first corpus to a low dimensional latent space.