Abstract:
A pixel unit includes a gate line, a first data line, a second data line, a first active device, and a pixel electrode. The first active device is electrically connected to the gate line and the first or second data line. The pixel electrode is electrically connected to the first active device. The pixel electrode includes a first sub-pixel electrode, a second sub-pixel electrode, and a first connecting electrode. Each of the first sub-pixel electrode and the second sub-pixel electrode includes a trunk electrode, a traverse trunk electrode, and branch electrodes. The first connecting electrode connects the first sub-pixel electrode to the second sub-pixel electrode.
Abstract:
A tri-state liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a first electrode, a second electrode, a third electrode and a fourth electrode. The first substrate and the second substrate are disposed oppositely. The liquid crystal layer disposed between the first substrate and the second substrate includes a plurality of polymer network liquid crystals. The first electrode is disposed between the first substrate and the liquid crystal layer, the second electrode is disposed between the second substrate and the liquid crystal layer, and the first and second electrodes include planar electrodes. The third and fourth electrodes are disposed between the first substrate and the liquid crystal layer, and the third and fourth electrodes include patterned electrodes. The tri-state liquid crystal display panel has a transmission state display mode, a dark state display mode and a haze state display mode.
Abstract:
A liquid crystal display panel includes first substrate, active switching device, patterned insulating layer, pixel electrode, auxiliary electrode, second substrate, common electrode and liquid crystal molecules. The patterned insulating layer is disposed on the first substrate and includes a plurality of inner insulating branches and slits, and each slit is located between two adjacent inner insulating branches. The pixel electrode is disposed on the patterned insulating layer and electrically connected to the active switching device. The periphery of the pixel electrode overlaps the inner insulating branches. The auxiliary electrode is disposed on the first substrate and at least partially surrounding the pixel electrode. The auxiliary electrode and the pixel electrode are not electrically connected, and the inner insulating branches partially overlap the auxiliary electrode in a vertical projection direction. The common electrode is disposed on the second substrate. The liquid crystal molecules are interposed between the first and second substrates.
Abstract:
A liquid crystal display panel includes first substrate, active switching device, patterned insulating layer, pixel electrode, auxiliary electrode, second substrate, common electrode and liquid crystal molecules. The patterned insulating layer is disposed on the first substrate and includes a plurality of inner insulating branches and slits, and each slit is located between two adjacent inner insulating branches. The pixel electrode is disposed on the patterned insulating layer and electrically connected to the active switching device. The periphery of the pixel electrode overlaps the inner insulating branches. The auxiliary electrode is disposed on the first substrate and at least partially surrounding the pixel electrode. The auxiliary electrode and the pixel electrode are not electrically connected, and the inner insulating branches partially overlap the auxiliary electrode in a vertical projection direction. The common electrode is disposed on the second substrate. The liquid crystal molecules are interposed between the first and second substrates.
Abstract:
A liquid crystal display panel includes a first substrate, a conductive line, an active switch device, a pixel electrode and a first electrode. The pixel electrode has a cruciform opening, which includes a first slit extending along a first direction and a second slit extending along a second direction intersecting the first slit. The first electrode is disposed on the first substrate and located adjacent to the periphery of the pixel electrode. The pixel electrode includes two first parts and a second part, where the two first parts are respectively disposed adjacent to two opposite ends of the second slit in the second direction. The distance between the two first parts in the second direction has a first width, the second part has a second width in the second direction, and the first width is greater than the second width.
Abstract:
A tri-state liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a first electrode, a second electrode, a third electrode and a fourth electrode. The first substrate and the second substrate are disposed oppositely. The liquid crystal layer disposed between the first substrate and the second substrate includes a plurality of polymer network liquid crystals. The first electrode is disposed between the first substrate and the liquid crystal layer, the second electrode is disposed between the second substrate and the liquid crystal layer, and the first and second electrodes include planar electrodes. The third and fourth electrodes are disposed between the first substrate and the liquid crystal layer, and the third and fourth electrodes include patterned electrodes. The tri-state liquid crystal display panel has a transmission state display mode, a dark state display mode and a haze state display mode.