Abstract:
A pixel structure of a display panel includes a gate line, a first data line, a second data line, a first active switching device, a second active switching device, a first pixel electrode and a second pixel electrode. The first pixel electrode is electrically connected to the first active switching device. The first pixel electrode includes a first main electrode disposed adjacent to one side of the first data line, and a second main electrode disposed adjacent to one side of the second data line. The second pixel electrode is electrically connected to the second active switching device. The second pixel electrode is disposed between the first main electrode and the second main electrode of the first pixel electrode.
Abstract:
A tri-state liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a first electrode, a second electrode, a third electrode and a fourth electrode. The first substrate and the second substrate are disposed oppositely. The liquid crystal layer disposed between the first substrate and the second substrate includes a plurality of polymer network liquid crystals. The first electrode is disposed between the first substrate and the liquid crystal layer, the second electrode is disposed between the second substrate and the liquid crystal layer, and the first and second electrodes include planar electrodes. The third and fourth electrodes are disposed between the first substrate and the liquid crystal layer, and the third and fourth electrodes include patterned electrodes. The tri-state liquid crystal display panel has a transmission state display mode, a dark state display mode and a haze state display mode.
Abstract:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first regions and a plurality of second regions. The first regions and the second regions are formed on the first substrate and the second substrate. In a narrow viewing mode, the luminous flux of the first regions along a first viewing direction is different from that of the first regions along a second viewing direction opposite to the first viewing direction, and the luminous flux of the second regions along the first viewing direction is substantially different from that of the first regions along the first viewing direction.
Abstract:
A pixel structure of display panel includes a first substrate, a second substrate, a liquid crystal layer, a first pixel electrode, a patterned insulation layer, a second pixel electrode and a common electrode. The first substrate has a plurality of alignment regions. The second substrate and the first substrate are disposed opposite to each other. The first pixel electrode is a full-surfaced electrode, which includes a plurality of branch electrodes disposed in the alignment regions. The patterned insulation layer is disposed between the first pixel electrode and the liquid crystal layer. The second pixel electrode is disposed in at least one boundary of each of the alignment regions. The common electrode is disposed on the second substrate.
Abstract:
In an exemplary flat display apparatus and control circuit and method for controlling the flat display apparatus, the flat display apparatus includes a plurality of gate driving units, each of which controls the operation of a scan line in the flat display apparatus. The flat display apparatus provides a first gate high level voltage signal and a second gate high level voltage signal to the gate driving units such that the first and second gate high level voltage signals are used as voltage signals transmitted to corresponding scan lines. The first and second gate high level voltage signals respectively include a falling edge with a slope. Duration time of the falling edge of the first gate high level voltage signal is longer than that of the falling edge of the second gate high level voltage signal.
Abstract:
A liquid crystal display panel includes a first substrate, a conductive line, an active switch device, a pixel electrode and a first electrode. The pixel electrode has a cruciform opening, which includes a first slit extending along a first direction and a second slit extending along a second direction intersecting the first slit. The first electrode is disposed on the first substrate and located adjacent to the periphery of the pixel electrode. The pixel electrode includes two first parts and a second part, where the two first parts are respectively disposed adjacent to two opposite ends of the second slit in the second direction. The distance between the two first parts in the second direction has a first width, the second part has a second width in the second direction, and the first width is greater than the second width.
Abstract:
A pixel driving circuit is electrically coupled between a first data line and a second data line and between a first scan line and a second scan line, and includes a first switch, a second switch, a third switch, a fourth switch, a liquid crystal capacitor electrically connected between the first switch and the second switch, a first capacitor electrically connected to the first switch, a second capacitor electrically connected to the second switch, a first storage capacitor, a second storage capacitor and at least one switching unit. The first storage capacitor is electrically connected to the third switch and supplied by a reference voltage. The second storage capacitor is electrically connected to the fourth switch and supplied by the reference voltage. The at least one switching unit is used for redistributing charges in the pixel driving circuit.
Abstract:
A pixel structure of display panel includes a first substrate, a second substrate, a liquid crystal layer, a first pixel electrode, an insulation layer, a second pixel electrode and a common electrode. The first substrate has a plurality of alignment regions. The second substrate and the first substrate are disposed opposite to each other. The first pixel electrode is a patterned electrode, which includes a plurality of branch electrodes disposed in the alignment regions. The insulation layer is disposed between the first pixel electrode and the liquid crystal layer. The second pixel electrode is a patterned electrode disposed in at least one boundary of each of the alignment regions. The common electrode is disposed on the second substrate.
Abstract:
A display panel includes a first substrate, first gate lines, first data lines, second data lines, third data lines, fourth data lines, first sub-pixels, second sub-pixels and first shielding electrodes. The first substrate has a plurality of first sub-pixel regions and second sub-pixel regions. The first gate lines extend along a first direction. The first data lines, the second data lines, the third data lines and the fourth data lines extend along a second direction and are sequentially arranged in the first direction. The first sub-pixel is electrically connected to one of the first data line and the second data line. The second sub-pixel is electrically connected to one of the third data line and the fourth data line. The first shielding electrodes extend along the second direction and are disposed in a common boundary between the first sub-pixel region and the second sub-pixel region adjacent to each other.
Abstract:
A pixel structure of display panel includes a first substrate, a second substrate, a liquid crystal layer, a first pixel electrode, an insulation layer, a second pixel electrode and a common electrode. The first substrate has a plurality of alignment regions. The second substrate and the first substrate are disposed opposite to each other. The first pixel electrode is a patterned electrode, which includes a plurality of branch electrodes disposed in the alignment regions. The insulation layer is disposed between the first pixel electrode and the liquid crystal layer. The second pixel electrode is a patterned electrode disposed in at least one boundary of each of the alignment regions. The common electrode is disposed on the second substrate.