Abstract:
An apparatus for forming varied length wire coils for insertion into stator core slots includes a template positioned that is configured to vary a length of consecutive wire turns while wire is received from a flyer winder. The wire turns may then be inserted into a pair of stator core slots depending upon their respective lengths. A method of using the apparatus to form a winding with varied length turns includes depositing wire turns on a template, varying a length of at least two consecutive wire turns as the wire is deposited on the template, removing the wire turns from the template, and inserting the removed wire turns into stator core slots.
Abstract:
A pallet conveyor apparatus for moving pallets, which carry components of a dynamo-electric machine, along and between routes of a manufacturing line is provided. The pallet conveyor apparatus includes a plurality of pallets, at least one substantially horizontal rail structure, at least one loop-shaped conveyor belt, and a drive for causing the conveyor belt to move along an upper track of the rail structure. The conveyor apparatus may be driven with a drive cartridge that fits within the rail structure. A pallet for use with the apparatus has a platform and a seat portion. The platform has an upper surface that supports the component. The seat portion has a substantially inverted nullUnull shape. The seat portion of the rail structure has a central surface and two opposing surfaces. The dimensions of the seat portion and the rail structure are such that when the seat portion fits over the rail structure a pallet will be prevented from falling off the rail structure.
Abstract:
Methods and apparatus are provided for wire winding and fabrication for dynamo-electric machine components such as ferromagnetic armature or stator cores for motors or the like. Wire may be wound onto individual portions of dynamo-electric machine components, which may then be assembled to form complete components. Wire may be wound by steering a rotating flyer or the like in a trajectory that closely follows the surface of the core onto which the wire is being wound. Wire may also be wound by rotating the portions during winding. The same holding members that are used to hold the portions during winding may be used to hold the portions during assembly of the portions into machine components.
Abstract:
An armature winder having an adjustable winding arm, includes a wire delivery point with two degrees of freedomnullone along the longitudinal axis of the armature winder and one transverse to the longitudinal axis of the armature winder. In one preferred embodiment, the adjustable winding arm pivots around an axis transverse to the longitudinal axis of the winder. This pivoting motion allows adjustment of the wire delivery point along an arcuate path, thereby utilizing each of the degrees of freedom simultaneously.
Abstract:
Apparatus and methods for winding wire around the poles and partly within the slots of dynamoelectric machine components, such as stators. Some stators are designed with poles having pole tips that extend relatively far in a peripheral direction, perhaps reaching nearly half way across the stator core. When the pole tips reach so far around the stator core and thus leave little room between opposing pole tips, it may be difficult to use winding technologies with needles that need to move between opposing pole tips. Therefore, stators may be divided into segments for the winding of each pole, and then reassembled to form a complete stator. The segments are wound by rotating the segment and a wire guide structure about an axis, while providing wire to the rotating apparatus from a wire source.
Abstract:
Methods and apparatus are presented that improve the efficiency of stator production by connecting stator coil leads to final attachment devices before the coils are inserted into a stator core. After coil insertion, the final attachment devices are merely mounted to the stator receiving the stator core, eliminating most if not all post-coil-insertion lead identification and manipulation processes. The final attachment devices can be terminal receivers that include a plurality of wire sockets for receiving a plurality of coil leads. Coil leads are connected to final attachment devices during the coil winding stage. Such connections add little or no additional time to the winding stage.