摘要:
Techniques for managing interference in a wireless network are described. In an aspect, reduce interference requests and interference indicators may be used for interference management to enable operation in scenarios with dominant interferers. In one design, a terminal may receive a reduce interference request from a first base station requesting lower interference on specified time-frequency resources. The terminal may also receive an interference indicator conveying the interference observed by a second base station. The terminal may determine its transmit power based on the reduce interference request and the interference indicator. For example, the terminal may determine an initial transmit power based on the reduce interference request (or the interference indicator) and may adjust the initial transmit power based on the interference indicator (or the reduce interference request) to obtain its transmit power. The terminal may transmit data to a serving base station at the determined transmit power.
摘要:
Techniques for transmitting null pilots to support interference estimation in a wireless network are described. A null pilot is non-transmission on designated time-frequency resources by a cell or a cluster of cells supporting cooperative transmission to a UE. The received power of the null pilot from the cell or cluster of cells may be indicative of interference from other cells. In one design, a cell in the cluster may determine resources for sending a null pilot by the cell. The cell may transmit the null pilot (i.e., send no transmissions) on the resources to allow UEs to estimate out-of-cluster interference. Some or all cells in the cluster may transmit null pilots on the same resources. The cell may receive interference and channel information from the UE and may send data transmission to the UE based on the interference and/or channel information. Remaining cells in the cluster may reduce interference to the UE.
摘要:
Providing for improved access communication for wireless systems is described herein. By way of example, wireless devices can employ wireless resource re-use in selecting a subset of access communication resources, to mitigate interference on uplink access requests. Re-use can be based on current network conditions, or on a type of base station facilitating the wireless communication. In some aspects, planned resource re-use can be facilitated by an access terminal. The access terminal requests neighboring or interfering network access points to reserve a set of resources for a serving access point. Reserved resources can be conveyed to the serving access point with an uplink access probe, to further mitigate interference.
摘要:
Techniques for managing interference in a wireless network are described. In an aspect, reduce interference requests and interference indicators may be used for interference management to enable operation in scenarios with dominant interferers. In one design, a terminal may receive a reduce interference request from a first base station requesting lower interference on specified time-frequency resources. The terminal may also receive an interference indicator conveying the interference observed by a second base station. The terminal may determine its transmit power based on the reduce interference request and the interference indicator. For example, the terminal may determine an initial transmit power based on the reduce interference request (or the interference indicator) and may adjust the initial transmit power based on the interference indicator (or the reduce interference request) to obtain its transmit power. The terminal may transmit data to a serving base station at the determined transmit power.
摘要:
Providing for improved access communication for wireless systems is described herein. By way of example, wireless devices can employ wireless resource re-use in selecting a subset of access communication resources, to mitigate interference on uplink access requests. Re-use can be based on current network conditions, or on a type of base station facilitating the wireless communication. In some aspects, planned resource re-use can be facilitated by an access terminal. The access terminal requests neighboring or interfering network access points to reserve a set of resources for a serving access point. Reserved resources can be conveyed to the serving access point with an uplink access probe, to further mitigate interference.
摘要:
Techniques for transmitting null pilots to support interference estimation in a wireless network are described. A null pilot is non-transmission on designated time-frequency resources by a cell or a cluster of cells supporting cooperative transmission to a UE. The received power of the null pilot from the cell or cluster of cells may be indicative of interference from other cells. In one design, a cell in the cluster may determine resources for sending a null pilot by the cell. The cell may transmit the null pilot (i.e., send no transmissions) on the resources to allow UEs to estimate out-of-cluster interference. Some or all cells in the cluster may transmit null pilots on the same resources. The cell may receive interference and channel information from the UE and may send data transmission to the UE based on the interference and/or channel information. Remaining cells in the cluster may reduce interference to the UE.
摘要:
Systems and methodologies are described that facilitate indicating a dominant interferer to a target serving base station in a wireless communication environment. A mobile device can detect presence or absence of a dominant interferer. Further, an access probe that includes information related to the presence or absence of the dominant interferer can be generated. For example, the information can be included in a payload of the access probe as an explicit flag, an explicit indication of an interference level, a Channel Quality Indicator (CQI) value (e.g., reserved versus non-reserved, . . . ), etc. Moreover, the access probe can be transmitted to the target serving base station to initiate an access procedure. The target serving base station can select a time-frequency resource to be utilized for a responsive downlink transmission (e.g. access grant signal, subsequent access related message, . . . ) as a function of the information included in the access probe.
摘要:
Systems and methodologies are described that facilitate indicating a dominant interferer to a target serving base station in a wireless communication environment. A mobile device can detect presence or absence of a dominant interferer. Further, an access probe that includes information related to the presence or absence of the dominant interferer can be generated. For example, the information can be included in a payload of the access probe as an explicit flag, an explicit indication of an interference level, a Channel Quality Indicator (CQI) value (e.g., reserved versus non-reserved, . . . ), etc. Moreover, the access probe can be transmitted to the target serving base station to initiate an access procedure. The target serving base station can select a time-frequency resource to be utilized for a responsive downlink transmission (e.g. access grant signal, subsequent access related message, . . . ) as a function of the information included in the access probe.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a first station (e.g., a base station or a terminal) may receive a message sent by a second station to request reduction of interference on at least one resource. In response to receiving the message, the first station may determine a first transmit power level to use for the at least one resource based on one or more factors such as a priority metric sent in the message, the buffer size at the first station, etc. The first station may send a power decision pilot on the at least one resource at a second transmit power level determined based on the first transmit power level.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a serving base station may send a message to a terminal to trigger short-term interference mitigation. In response, the terminal may send a message to request at least one interfering base station to reduce interference on at least one resource. Each interfering base station may determine a transmit power level to be used for the at least one resource and may send a pilot at this transmit power level. The terminal may estimate the channel quality of the at least one resource based on at least one pilot received from the at least one interfering base station. The terminal may send information indicative of the estimated channel quality to the serving base station. The serving base station may send a data transmission on the at least one resource to the terminal.