Abstract:
A method for transferring a data packet between a first source terminal and a first destination terminal, in a communications network having a plurality of source terminals, destination terminals, satellites and downlink antenna beams one downlink antenna beam of which covers the first destination terminal. Each data packet includes a destination address identifying a user for which the data packet is meant with the first destination terminal having the capability to reach the user. The method includes assigning a unique downlink beam identifier to each the downlink antenna beam in the communications network; mapping the destination address to a downlink beam identifier, the corresponding antenna beam of which covers the first destination terminal. The data packet is segmented into one or more cells, each cell having a cell header. The downlink beam identifier is placed into each cell header and the cells are routed to the downlink antenna beam corresponding to the downlink beam identifier. The cells are broadcasted over the downlink antenna beam and received by the destination terminals located within the downlink antenna beam where one of the destination terminals are the first destination terminal.
Abstract:
A method for transferring a data packet, in a connectionless manner between a first source terminal and a first destination terminal, in a communications network which supports connection-oriented communications. The data packet is segmented into one or more cells with a portion of each cell comprising the cell header. A preselected value is place into the cell type identifier field to indicate that the cell is to be sent in a connectionless mode. A source terminal identifier is assigned to each source terminal in the network and the source terminal identifier corresponding to the first source terminal is placed into each cell header. A preselected value is placed into the information field to be used by the network to route the cells from the first source terminal to the first destination terminal. The cells are routed though the network and broadcasted over the downlink antenna beam which covers the first destination terminal. All destination terminals within the downlink antenna beam receive all the cells and sort the cells by source terminal identifier.
Abstract:
The present invention provides a method (100) for virtual path switching of an ATM cell on a processing communications satellite. The method includes establishing a set of VPIs (104) associated with output ports on the satellite and assigning one VPI to an ATM cell (108). The ATM cell may then be received by an input port of the satellite (110). An associated output port (114) for the ATM cell is determined from the VPI, and the ATM cell is transferred to that output port (116). The present invention may also provide for multicast switching (400). The VPI assigned to the ATM cell may be associated with a multicast output port. The ATM cells may be reproduced (426) and reassigned with a new VPI from a multicast group of VPIs (428). The reproduced cells are received at an input port of the satellite (430) for routing to the corresponding output ports.
Abstract:
A method for transferring a data message, in a connectionless manner between a selected source terminal and a selected destination terminal, in a communications network which supports connection-oriented communications. The network has a plurality of source and destination terminals in addition to satellites having up and downlink antenna beams. One of the uplink beams covers the selected source terminal and one of the downlink antenna beams covers the selected destination terminal. Downlink beam identifiers are assigned to each downlink antenna beam in the network. An address is assigned to each destination terminal so that the address of the selected destination terminal includes a downlink beam identifier of one downlink antenna beam in the network which covers the selected destination terminal. The downlink beam identifier is used to route the data message through the network.
Abstract:
A method and apparatus for communicating fixed-length data packets through an intermediate computer network. The method comprises receiving a data packet characterized by a fixed-length packet format, and constructing a remnant packet characterized by the fixed-length packet format, which includes inserting at least a portion of the data packet routing information in the data field of the remnant packet. The method also comprises communicating the remnant packet, receiving the remnant packet and constructing a reconstructed data packet, which includes Inserting data packet routing information obtained from the remnant packet in the address field of the reconstructed packet. The apparatus comprises a communication network node comprising a receiver, transmitter, computer memory and processor for performing the foregoing method steps.
Abstract:
The present invention relates to distributed ATM switches for use within an ATM network including processing satellite links. The functionality of the distributed ATM switch is preferably performed at three distinct locations. The first location is at a user earth terminal configured to perform at least one user plane function. The second location is at a network operations center configured to perform at least one control plane function. Finally, the remaining ATM switch functionality is performed within the payload of a processing satellite.