Abstract:
Environmental map generation techniques and systems are described. A digital image is scaled to achieve a target aspect ratio using a content aware scaling technique. A canvas is generated that is dimensionally larger than the scaled digital image and the scaled digital image is inserted within the canvas thereby resulting in an unfilled portion of the canvas. An initially filled canvas is then generated by filling the unfilled portion using a content aware fill technique based on the inserted digital image. A plurality of polar coordinate canvases is formed by transforming original coordinates of the canvas into polar coordinates. The unfilled portions of the polar coordinate canvases are filled using a content-aware fill technique that is initialized based on the initially filled canvas. An environmental map of the digital image is generated by combining a plurality of original coordinate canvas portions formed from the polar coordinate canvases.
Abstract:
The present disclosure is directed toward systems and method for warping a panoramic image to fit a predetermined shape using content-unaware warping techniques. For example, systems and methods described herein involve generating a mesh grid for a panoramic image with skewed edges by sampling boundary points around edges of the panoramic image and interpolated interior vertex points from the boundary points. Further, systems and methods described herein involve warping the mesh grid and underlying pixels of the panoramic image to fit a predetermined boundary. Further, systems and methods described herein involve generating the mesh grid and warping the panoramic image without consideration of content included therein and without overly-warping individual cells of the mesh grid and underlying pixels of the panoramic image.
Abstract:
Techniques involving flexible video object boundary tracking are described. One or more curves, such as Bezier curves, are received as drawn by a user on an initial frame of video to define a boundary of an object in the frame. The curves are then mapped to a subsequent or previous frame of the video where the object is included but has a new or changed boundary. A segmentation boundary is determined for the object in the subsequent frame and endpoints of segments of the curves are snapped to the segmentation boundary. Additionally, confidence values are determined for subregions of the frame that include portions of the curves. These confidence values are used to update control points on the curve segments to fit the curve segments to the new or changed boundary of the object in the frame.
Abstract:
Systems, methods, and computer-readable storage media for chatter reduction in video object segmentation using a variable bandwidth search region. A variable bandwidth search region generation method may be applied to a uniform search region to generate a variable bandwidth search region that reduces the search range for segmentation methods such as a graph cut method. The method may identify parts of the contour that are moving slowly, and reduce the search region bandwidth in those places to stabilize the segmentation. This method may determine a bandwidth for each of a plurality of local windows of an image according to an estimate of how much an object in the image has moved from a previous image. The method may blend the bandwidths for the plurality of local windows to generate a blended map. The method may then generate a variable bandwidth search region for an object according to the blended map.
Abstract:
The present disclosure is directed toward systems and method for warping a panoramic image to fit a predetermined shape using content-unaware warping techniques. For example, systems and methods described herein involve generating a mesh grid for a panoramic image with skewed edges by sampling boundary points around edges of the panoramic image and interpolated interior vertex points from the boundary points. Further, systems and methods described herein involve warping the mesh grid and underlying pixels of the panoramic image to fit a predetermined boundary. Further, systems and methods described herein involve generating the mesh grid and warping the panoramic image without consideration of content included therein and without overly-warping individual cells of the mesh grid and underlying pixels of the panoramic image.
Abstract:
Techniques involving flexible video object boundary tracking are described. One or more curves, such as Bezier curves, are received as drawn by a user on an initial frame of video to define a boundary of an object in the frame. The curves are then mapped to a subsequent or previous frame of the video where the object is included but has a new or changed boundary. A segmentation boundary is determined for the object in the subsequent frame and endpoints of segments of the curves are snapped to the segmentation boundary. Additionally, confidence values are determined for subregions of the frame that include portions of the curves. These confidence values are used to update control points on the curve segments to fit the curve segments to the new or changed boundary of the object in the frame.
Abstract:
Systems, methods, and computer-readable storage media for chatter reduction in video object segmentation using a variable bandwidth search region. A variable bandwidth search region generation method may be applied to a uniform search region to generate a variable bandwidth search region that reduces the search range for segmentation methods such as a graph cut method. The method may identify parts of the contour that are moving slowly, and reduce the search region bandwidth in those places to stabilize the segmentation. This method may determine a bandwidth for each of a plurality of local windows of an image according to an estimate of how much an object in the image has moved from a previous image. The method may blend the bandwidths for the plurality of local windows to generate a blended map. The method may then generate a variable bandwidth search region for an object according to the blended map.