Abstract:
Methods and devices are disclosed for acquiring depth resolved aberration information using principles of low coherence interferometry and perform coherence gated wavefront sensing (CG-WFS). The wavefront aberrations is collected using spectral domain low coherence interferometry (SD-LCI) or time domain low coherence interferometry (TD-LCI) principles. When using SD-LCI, chromatic aberrations can also be evaluated. Methods and devices are disclosed in using a wavefront corrector to compensate for the aberration information provided by CG-WFS, in a combined imaging system, that can use one or more channels from the class of (i) optical coherence tomography (OCT), (ii) scanning laser ophthalmoscopy, (iii) microscopy, such as confocal or phase microscopy, (iv) multiphoton microscopy, such as harmonic generation and multiphoton absorption. For some implementations, simultaneous and dynamic aberration measurements/correction with the imaging process is achieved. The methods and devices disclosed can provide wavefront sensing in the presence of stray reflections from optical interfaces.
Abstract:
Methods and devices are disclosed for acquiring depth resolved aberration information using principles of low coherence interferometry and perform coherence gated wavefront sensing (CG-WFS). The wavefront aberrations is collected using spectral domain low coherence interferometry (SD-LCI) or time domain low coherence interferometry (TD-LCI) principles. When using SD-LCI, chromatic aberrations can also be evaluated. Methods and devices are disclosed in using a wavefront corrector to compensate for the aberration information provided by CG-WFS, in a combined imaging system, that can use one or more channels from the class of (i) optical coherence tomography (OCT), (ii) scanning laser ophthalmoscopy, (iii) microscopy, such as confocal or phase microscopy, (iv) multiphoton microscopy, such as harmonic generation and multiphoton absorption. In particular, a swept source (SS) is used that drives both an OCT channel and a coherence gated wavefront sensor, where: a) both channels operate according to SS-OCT principles; b) OCT channel integrates over at least one tuning scan of the swept source to provide a TD-OCT image of the object; c) CG-WFS integrates over at least one tuning scan of the swept source to provide an en-face TD-OCT mapping of the wavefront. For some implementations, simultaneous and dynamic aberration measurements/correction with the imaging process is achieved. The methods and devices for depth resolved aberrations disclosed, will find applications in wavefront sensing and adaptive optics imaging systems that are more tolerant to stray reflections from optical interfaces, such as reflections from the microscope objectives and cover slip in microscopy and when imaging the eye, the reflection from the cornea.