Abstract:
Examples disclosed herein are directed to a method and apparatus for determining a position of a ring within a process kit. In one example, a sensor assembly for a substrate processing chamber is provided. The sensor assembly includes a housing having a top surface, a bottom surface opposite the top surface, and a plurality of sidewalls connecting the top surface to the bottom surface. The housing also has a recess in the top surface, the recess forming an interior volume within the housing. The sensory assembly includes a bias member, and a contact member disposed on the bias member. The bias member and contact member are disposed within the recess. A sensor is configured to detect a displacement of the contact member. The displacement of the contact member corresponds to a relative position of an edge ring.
Abstract:
In interferometer imaging signal acquisition using a movable optical beam to sample a target with specular or non specular reflecting surfaces or internal features, beam moving during interferometer signal acquisition can generate unwanted phase error due to shifting speckle field. Examples include coherent LIDAR, Interferometry Doppler sensing and optical coherence tomography. During an interferometer signal acquisition period, an interferometer sensing beam can be substantially stationary, and active step-scanning can be synchronized with interferometer signal acquisition cycles. For interferometers using repetitive chirping lasers, passive dispersive counter-scan mechanisms can be used to assist step-scanning operation.
Abstract:
A measuring apparatus for contactlessly measuring vibration or displacement of a measurement target includes a light source configured to emit a continuous wave of light frequency-modulated to arrange a measurement site of the measurement target within a correlation peak, a divider configured to divide the continuous wave of light into first and second divided-waves of light, a light receiver configured to receive interfering light of the first divided-wave of light reflected by the measurement target and the second divided-wave of light, and a calculator configured to calculate the vibration or displacement of the measurement target using an electric signal output from the light receiver.
Abstract:
Various embodiments of the present disclosure relate to an apparatus and a method for controlling an optical sensor in an electronic device. The electronic device includes: a light emission element configured to emit light; a first light reception element configured to detect an intensity of light which is reflected from an object based on the light emitted by the light emission element; a second light reception element configured to detect a shape of the object using the light which is reflected from the object based on the light emitted by the light emission element; and a processor. The processor is configured to: control the light emission element to emit light with an intensity corresponding to an operation mode of the electronic device; and receive light which is reflected from the object via the first light reception element or the second light reception element based on the operation mode of the electronic device. Other embodiments are possible.
Abstract:
One or more devices, systems, methods and storage mediums for performing continuously, full range optical coherence tomography (OCT) without losing A-lines are provided. Examples of such applications include imaging, evaluating and diagnosing biological objects, such as, but not limited to, for cardio and/or ophthalmic applications, and being obtained via one or more optical instruments, such as, but not limited to, optical probes (e.g., common path probes), catheters, endoscopes, phase shift units (e.g., galvanometer scanner) and bench top systems. Preferably, the OCT devices, systems methods and storage mediums include or involve a phase shift device including at least a galvanometer scanner. The galvanometer scanner is preferably applied with or to a voltage with a triangle shape, the voltage having continuity or absolute constant frequency to obtain continuous images without losing any A-lines. The method(s) may include background subtraction, image shifting to compensate phase shifts and a DC noise reduction algorism.
Abstract:
A device for absolute distance measurement includes a first tunable light source for emitting a first wavelength light of a first tunable frequency modulated by a first modulating frequency and a second light source for emitting a second wavelength light of a second frequency modulated by a second modulating frequency. An optical coupler couples the first wavelength light and the second wavelength light into an interferometer cavity. An interferometer detector provides an interference measurement signal based on a detected interference pattern. A demodulator unit generates a first demodulation signal based on the interference measurement signal by demodulation with the first modulating frequency and a second demodulation signal based on the interference measurement signal by demodulation with the second modulating frequency. A computation unit computes an absolute distance by evaluating the first demodulation signal acquired during a sweep of the first tunable frequency and the second demodulation signal.
Abstract:
An optical sensor includes an optical fiber inscribed with a repeated refraction pattern such that light scattered from a location on the optical fiber is scattered at multiple frequencies in a range of frequencies. The inscribed patterns overlap at every measurement point along at least a portion of the length of the sensor. An optical sensing system including control circuitry coupled to the optical fiber detects measurement scatter data from the optical fiber over the range of frequencies, determines a change in the detected measurement scatter data over the range of frequencies, and extracts a parameter describing a state of the optical fiber from the determined change in the detected measurement scatter data. The sensor may be made by inscribing a first light refracting pattern on the optical fiber at every measurement point along at least a portion of the length of the sensor and inscribing a second light refracting pattern on the optical fiber that overlaps the first inscribed light refracting pattern at every measurement point along at least that portion of the length of the sensor.
Abstract:
In an inner layer measurement method, first irradiation light and second irradiation light having a peak wavelength longer than that of the first irradiation light are formed by changing at least one of a position where light emitted from a lamp is transmitted through a short pass filter and a position where light emitted from a lamp is transmitted through a long pass filter. Then, a first XY sectional surface of a semitransparent body is measured by irradiating the first XY sectional surface with the first irradiation light. A second XY sectional surface positioned on a layer deeper than the first XY sectional surface is measured by irradiating the second XY sectional surface with the second irradiation light. Each of the short pass filter and the long pass filter can transmit the light and has properties of changing a cutoff wavelength according to the position where the light is transmitted.
Abstract:
An extrinsic optical fiber device for measuring a physical parameter, includes: a light source, of central wavelength λ, an optical fiber projecting, a unit for detecting an interferometric signal, the interferometric signal including the information about the physical parameter to be determined, elements for modulating a signal emitted by the light source, elements for calculating the physical parameter on the basis of the interferometric signal measured by the detection unit. The modulated signal from the light source includes an alternating component including a double frequency modulation generated by the modulation elements. The main application of this device is the measurement of the displacement of a target.
Abstract:
A multi-wavelength interferometer includes a beam splitter configured to split plural light fluxes into a reference beam and a measurement beam, a frequency shifter configured to shift a frequency of at least one of the reference beam and the measurement beam to make the frequencies of the reference beam and the measurement beam different from each other, an optical system configured to cause the measurement beam to be incident on a measurement surface and to cause the measurement beam reflected from the measurement surface to interfere with the reference beam to obtain interference light, a dividing unit configured to divide the interference light into a plurality of light beams, and a detection unit configured to detect the plurality of light beams divided by the dividing unit.