Abstract:
A method for measuring temperature includes emitting light with an illumination spectrum into a tissue with at least one illumination, receiving the remission of light with a remission spectrum from the tissue using at least one detector, converting the remission spectrum into a detector signal, sending the detector signal to a calculating unit, calculating a first theoretical remission spectrum based on a solution for describing the propagation of light in the tissue with the calculating unit, assuming estimated volume fractions of the individual tissue components, adapting the theoretical remission spectrum to the measured remission spectrum, and calculating at least one volume fraction of a tissue component from the remissions spectrum using a minimization algorithm, which is used by the calculating unit to adapt the theoretical remission spectrum to the measured remission spectrum using variations in the volume fractions of the individual tissue components which are present in the tissue.
Abstract:
A medical instrument includes an endoscope shaft and an electrode cap with a pin axially movable in the endoscope shaft. A first electrode is held by a first electrode carrier at a distal end piece of the endoscope shaft, and a second electrode is held by a second electrode carrier at the electrode cap. A safety switch is arranged in proximity to one of the electrode carriers and interconnected with a feed line that feeds HF current to the second electrode. The safety switch can be brought into an OFF or disconnect position to disconnect HF current supply to the second electrode. The safety switch can include an outer contact ring fixed at a proximal end portion of the pin, and an actuating rod that protrudes from the pin at the distal end and transmits movement to the second electrode carrier.
Abstract:
An electrosurgical instrument includes mutually movable instrument legs each comprising one or more electrode faces between which tissue can be clamped and treated in electrothermal manner. The movement of the instrument legs relative to each other can be delimited by at least two spacers which are spaced from each other in the longitudinal extension of the instrument legs and act on the instrument legs. At least one electrode face portion subjected to deflection in a closed position of the instrument legs is formed to be bow-shaped, in particular concave, the curvature being contrary to the bending direction to be expected.
Abstract:
An electrosurgical instrument including a jaw part made up of mutually movable instrument legs which have facing sides on which one or more electrode areas are arranged/formed in each case, the movement of the instrument legs relative to each other being able to be limited by at least one first spacer acting on proximal end portions of the instrument legs and at least one second spacer acting on distal end portions of the instrument legs. At least one of the spacers on at least one electrode is manufactured from an electrically conductive material and is connected to the electrode in electroconductive fashion. Furthermore, the spacer cooperates with a local spacer abutment surface which is made of a non-conductive material and arranged in electrically insulating manner on at least one opposing electrode.
Abstract:
An electrosurgical instrument includes mutually movable instrument legs each comprising one or more electrode faces between which tissue can be clamped and treated in electrothermal manner. The movement of the instrument legs relative to each other can be delimited by at least two spacers which are spaced from each other in the longitudinal direction of the instrument legs and act on the instrument legs. At least one electrode face portion subjected to deflection in a closed position of the instrument legs is formed to be bow-shaped, in particular concave, the curvature being contrary to the bending direction to be expected.
Abstract:
Surgical tissue fusion instrument and support structure having two gripping structures which are movable relative to each other and which are designed to bring together biological tissue sections that are to be connected to each other, with heat-generating means which are assigned to the gripping structures and, during tissue fusion, cause heat to be introduced in the area of a connection site of the biological tissue sections, and also with a support structure which is held between the gripping structures and, during tissue fusion, is operatively connected to the tissue sections. The support structure has at least one additional physical functional structure for aiding or promoting the tissue fusion.
Abstract:
A medical instrument includes an endoscope shaft and an electrode cap with a pin axially movable in the endoscope shaft. A first electrode is held by a first electrode carrier at a distal end piece of the endoscope shaft, and a second electrode is held by a second electrode carrier at the electrode cap. A safety switch is arranged in proximity to one of the electrode carriers and interconnected with a feed line that feeds HF current to the second electrode. The safety switch can be brought into an OFF or disconnect position to disconnect HF current supply to the second electrode. The safety switch can include an outer contact ring fixed at a proximal end portion of the pin, and an actuating rod that protrudes from the pin at the distal end and transmits movement to the second electrode carrier.
Abstract:
A surgical instrument for bonding body tissue includes an instrument shank or shaft, a first tool element, a second tool element axially movable relative to the first tool element, and an annular sleeve-like cutting element. The second tool element includes a plurality of tool element members that are radially deflectable. The first and second tool elements are each equipped with at least one electrode. The second tool element includes a biasing member that biases the tool element members in a radially inward direction. A stop member is operable in a first position to hold the tool element members against the biasing force of the biasing member in which the tool element members assume a maximum outer diameter. The stop member is further operable in a second position to release the tool element members such that the tool element members can deflect radially inwardly and cut body tissue.
Abstract:
A bipolar RF sealing instrument includes two instrument branches which are movable relative to one another at least to an open and a closed position, and an instrument handle with two handle units, each associated with a respective instrument branch and coupled for manually operating the instrument branches and for applying to the instrument branches a predetermined closing force at the closed position, a first of the two instrument branches having a terminal for an external RF generator and the second instrument branch adapted to be electrically coupled via an instrument-internal power contact with the first instrument branch. The power contact may be a spring contact for contact closure at a closure position. In addition or alternatively, an instrument-internal control switch is present and only activated when the predetermined closing force is reached, to enable the supply of electric current from an external RF generator to the instrument branch(es).
Abstract:
An electrosurgical instrument for making an end-to-end anastomosis between two hollow organ sections includes two tools movable relative to each other and each including an HF electrode by which the hollow organ sections can be fusion-welded to each other. The two tools are substantially sleeve-shaped or can at least be brought into sleeve shape so that a first tool can enclose a first hollow organ section and a second tool can enclose a second hollow organ section. Each of the electrodes is formed on an end face of each sleeve-shaped tool around which the respective hollow organ section can be everted inside out, and the two tools are movable relative to each other so that the electrodes are aligned and can clamp the everted hollow organ sections therebetween.