Abstract:
A fluid jet dispenser using at least two multilayer piezoelectric actuators is provided. The fluid jet dispenser includes a dispensing head and an electrical driver. The dispensing head includes at least two d31-mode multilayer piezoelectric actuators, a displacement magnifying element mechanically coupled to the d31-mode multilayer piezoelectric actuators, a piston, and a nozzle. More preferably, the two d31-mode multilayer piezoelectric actuators operate in an anti-phase condition. The electrical driver is electrically coupled to the d31-mode multilayer piezoelectric actuators for displacing the actuators in directions substantially perpendicular to polarization of piezoelectric layers in the d31-mode multilayer piezoelectric actuators in response to charging and discharging of the actuators by the electrical driver, to generate a fast movement of the piston to jet a pressurized fluid out of the nozzle of the dispensing head.
Abstract:
According to one aspect of the invention, there is provided a photo-sensor comprising: an optically transparent substrate; an electrode pair; and a photoactive film with electrical polarization located between the optically transparent substrate and the electrode pair, wherein the optically transparent substrate is configured to transmit incident radiation received by the optically transparent substrate to the photoactive film and wherein the electrode pair is configured to receive charge carriers generated by the photoactive film in response to the transmitted incident radiation.
Abstract:
A self-powered photodetector is provided including: a photovoltaic sensor element for generating an electrical charge under exposure to electromagnetic radiation; a charge storage section for accumulating the electrical charge generated by the photovoltaic sensor element; an electrical load configured to be powered by the accumulated electrical charge from the charge storage section and outputs a signal in response thereto, the signal being analyzable to determine a measurement of the electromagnetic radiation; and a switch for controlling a flow of the accumulated electrical charge from the charge storage section to the electrical load for powering the electrical load. There is also provided a wireless receiver for analyzing a signal from the self-powered photodetector to provide a measurement of the electromagnetic radiation, a photodetector system including the self-powered photodetector and the wireless receiver, and a method of fabricating the self-powered photodetector.
Abstract:
A vibration control system includes a plurality of spatially distributed transducer elements, a switching circuit, one or more vibration control circuits, and a controller circuit. The switching circuit is connected to each of the transducer elements. The one or more vibration control circuits are configured to perform vibration control, each of the one or more vibration control circuits being connected to the switching circuit. The controller circuit is configured to control the one or more vibration control circuits and the switching circuit. The switching circuit is configured to interconnect selected ones of the transducer elements based on a switching signal provided by the controller circuit, the switching signal being in response to a vibration condition, to adaptively form a group of interconnected transducer elements. The switching circuit is further configured to connect the group of interconnected transducer elements to a selected at least one of the one or more vibration control circuits for receiving a single vibration control signal or electrical impedance source corresponding to the vibration condition.
Abstract:
According to one aspect of the invention, there is provided a photo-sensor comprising: an optically transparent substrate; an electrode pair; and a photoactive film with electrical polarization located between the optically transparent substrate and the electrode pair, wherein the optically transparent substrate is configured to transmit incident radiation received by the optically transparent substrate to the photoactive film and wherein the electrode pair is configured to receive charge carriers generated by the photoactive film in response to the transmitted incident radiation.