Abstract:
Disclosed is the method of treating keratits in a subject thereof comprising administering into the subject an amphiphilic peptides of the present disclosure. Also disclosed are methods of removing biofilm from cornea.
Abstract:
Disclosed is the method of treating keratits in a subject thereof comprising administering into the subject an amphiphilic peptides of the present disclosure. Also disclosed are methods of removing biofilm from cornea.
Abstract:
Disclosed are amphiphilic peptides. Also disclosed are methods of treating proliferative disease, bacterial infection, viral infection and fungal infection, endotoxin neutralization and a method of removing biofilm. Also disclosed is the use of the amphiphilic peptides.
Abstract:
Disclosed are amphiphilic peptides. Also disclosed are methods of treating proliferative disease, bacterial infection, viral infection and fungal infection, endotoxin neutralization and a method of removing biofilm. Also disclosed is the use of the amphiphilic peptides.
Abstract:
One catalyst-free method of forming a polyurethane comprises forming a first emulsion comprising a first monomer, a surfactant, a water immiscible organic solvent, and water. The first monomer comprises two or more pentafluorophenyl carbonate groups. The first emulsion is combined with an aqueous mixture containing a second monomer comprising two or more nucleophilic amine groups, thereby forming a second emulsion. The first and second monomers of the second emulsion are allowed to react by interfacial polymerization, thereby forming a polyurethane. The polyurethane can have a number average molecular weight (Mn) of about 30000 to about 80000. The method is compatible with introducing pendant functionality into the polyurethane by way of cyclic carbonate precursors to the first monomer.