摘要:
In an image displaying apparatus, first and second detecting units detect quantities of light propagating through a light path at two different locations. A variation calculating unit calculates the variation in the light quantity in the light path based on the quantities of light detected by each of the first and second detecting units. A controlling unit controls the quantity of light propagated to the screen if the variation in the light quantity exceeds a predetermined value.
摘要:
In an image displaying apparatus, first and second detecting units detect quantities of light propagating through a light path at two different locations. A variation calculating unit calculates the variation in the light quantity in the light path based on the quantities of light detected by each of the first and second detecting units. A controlling unit controls the quantity of light propagated to the screen if the variation in the light quantity exceeds a predetermined value.
摘要:
A planar light source device includes a first light source for emitting a first light ray having a punctate spatial luminance distribution; a second light source for emitting a second light ray; a first spatial luminance distribution conversion portion for changing the first light ray to a linear spatial luminance distribution; a second spatial luminance distribution conversion portion for changing a spatial luminance distribution of the first and second light rays to a planar spatial luminance distribution; wherein the first light ray is a laser light; the second light ray has a divergence angle larger than the divergence angle of the first light ray when the first light ray is emitted from the first light source; and a slow-axis direction of the first light ray entering the second spatial luminance distribution conversion portion is parallel to an outgoing direction of the planar light.
摘要:
A planar light source device includes a first light source for emitting a first light ray having a punctate spatial luminance distribution; a second light source for emitting a second light ray; a first spatial luminance distribution conversion portion for changing the first light ray to a linear spatial luminance distribution; a second spatial luminance distribution conversion portion for changing a spatial luminance distribution of the first and second light rays to a planar spatial luminance distribution; wherein the first light ray is a laser light; the second light ray has a divergence angle larger than the divergence angle of the first light ray when the first light ray is emitted from the first light source; and a slow-axis direction of the first light ray entering the second spatial luminance distribution conversion portion is parallel to an outgoing direction of the planar light.
摘要:
A block noise reducer detects block boundaries in all components of an input video signal and smoothes the different components selectively on the basis of the detected block boundaries and their periodic locations. By removing block noise on the basis of block boundaries detected in color difference signals, the block noise reducer removes block noise from scenes with gradual changes in color but little or no change in luminance.
摘要:
A block noise detector has a spatial difference calculator that calculates differences between values of adjacent pixels. A spatial difference comparator detects edges by comparing the calculated differences. Eight counters count edges detected at different groups of positions spaced eight pixels apart in each horizontal line. The maximum count and the group of positions at which it occurs are detected at the end of each horizontal line to detect block noise and the positions of the block boundaries. The block noise detector is small in size because it only has to count edges in one line at a time, and detects edges accurately by comparing the difference at a given position separately with differences to the left and differences to the right.
摘要:
A block noise detector has a spatial difference calculator that calculates differences between values of adjacent pixels. A spatial difference comparator detects edges by comparing the calculated differences. Eight counters count edges detected at different groups of positions spaced eight pixels apart in each horizontal line. The maximum count and the group of positions at which it occurs are detected at the end of each horizontal line to detect block noise and the positions of the block boundaries. The block noise detector is small in size because it only has to count edges in one line at a time, and detects edges accurately by comparing the difference at a given position separately with differences to the left and differences to the right.
摘要:
Motion blur periods (bf) are detected (14) from gradation differences (g1) between a first image signal (d1) and a second image signal (d2), gradation differences (g2) between the second image signal (d2) and a third image signal (d3), and results of the detection of transition periods (h) in the gradations of the second image signal (d2), and the second image signal (d2) is corrected (3) only during the detected motion blur periods (bf). Transition periods (h) are deemed to occur when, for example, the absolute value of a gradation change in the second image signal is greater than a first predetermined threshold value (S1) and less than a second predetermined threshold value S2 (
摘要:
An image encoding device includes a dynamic range generator for outputting dynamic range data Dd1 of block image data Dc1, an average value generator for outputting average value data De1 of the block image data Dc1, a number-of-pixel reducing unit 20 for decreasing number of pixels of the block image data by reduction-number of pixels to generate reduced-number-of-pixel block image data Dc1′, an encoding parameter generator 18 for generating encoding parameter pa1 specifying a quantization bit rate and the reduction-number of pixels in accordance with the dynamic range data Dd1, a quantization threshold generator 19 for generating a quantization threshold value tb1, and an image data quantizer 21 for generating quantized image data Df1 from the reduced-number-of-pixel block image data Dc1′ with use of the quantization threshold value tb1.
摘要:
An image encoding device includes a dynamic range generator for outputting dynamic range data Dd1 of block image data Dc1, an average value generator for outputting average value data De1 of the block image data Dc1, a number-of-pixel reducing unit 20 for decreasing number of pixels of the block image data by reduction-number of pixels to generate reduced-number-of-pixel block image data Dc1′, an encoding parameter generator 18 for generating encoding parameter pa1 specifying a quantization bit rate and the reduction-number of pixels in accordance with the dynamic range data Dd1, a quantization threshold generator 19 for generating a quantization threshold value tb1, and an image data quantizer 21 for generating quantized image data Df1 from the reduced-number-of-pixel block image data Dc1′ with use of the quantization threshold value tb1.