摘要:
The adsorbent for carbon monoxide of the present invention is obtained by activating a Cu-ZSM5 type zeolite prepared as a catalyst for removal of NOX through heating at 450 to 600° C. in an inert gas atmosphere containing no moisture. The gas purification method of the present invention includes removing carbon monoxide as a trace amount of impurities contained in a gas by a temperature swing adsorption method, wherein the adsorbent for carbon monoxide according to claim 1 is used, and a regeneration operation of the adsorbent for carbon monoxide is carried out at 200 to 350° C.
摘要:
A method of activating a molded Cu-ZSM5 zeolite adsorbent of the present invention includes: oxidizing a molded product of Cu-ZSM5 zeolite in the flow of air or a gas having an equivalent oxidizability to the air at a temperature of 250° C. to 550° C.; and then heat-treating the molded product of the Cu-ZSM5 zeolite in vacuum or the flow of an inert gas at a temperature of 550° C. to 800° C. According to the present invention, an adsorbent whose adsorption performance is not deteriorated can be obtained in the case where a molded product is produced using Cu-ZSM5 zeolite.
摘要:
A method of activating a molded Cu-ZSM5 zeolite adsorbent of the present invention includes: oxidizing a molded product of Cu-ZSM5 zeolite in the flow of air or a gas having an equivalent oxidizability to the air at a temperature of 250° C. to 550° C.; and then heat-treating the molded product of the Cu-ZSM5 zeolite in vacuum or the flow of an inert gas at a temperature of 550° C. to 800° C. According to the present invention, an adsorbent whose adsorption performance is not deteriorated can be obtained in the case where a molded product is produced using Cu-ZSM5 zeolite.
摘要:
An apparatus and a method for purifying the air used in cryogenic air separation are described, which are capable of effectively removing nitrogen oxides and/or hydrocarbons. The apparatus comprises an adsorber comprising an adsorption cylinder that has a first adsorbing layer and a second adsorbing layer therein. The first adsorbing layer is composed of a first adsorbent capable of selectively adsorbing water in the air. The second adsorbing layer is composed of a second adsorbent capable of selectively adsorbing nitrogen oxide and/or hydrocarbon in the air passing the first adsorbing layer, wherein the second adsorbent comprises an X zeolite containing magnesium ion as an ion-exchangeable cation.
摘要:
A gas separation method and apparatus that recovers efficiently principal gas components from a feed gas that includes a plurality of components, and enables supplying the product gases continuously at a stable flow rate and component concentration. A first separation step using a first adsorption column and a second separation step using a second adsorption column are provided, a circulating feed gas, consisting of the recovered exhaust gases discharged in each of the steps and the feed gas, is used as a gas to be separated. The outflow rate and component concentration of a second gas product are maintained constant by controlling the outflow rate of the first gas product.
摘要:
The invention provides a gas separation method and apparatus that can recover efficiently principal gas components from a feed gas that includes a plurality of components, and enables supplying the product gases continuously at a stable flow rate and component concentration. In the present invention, a first separation step using a first adsorption column and a second separation step using a second adsorption column are provided, a circulating feed gas, which is consisting of the recovered exhaust gases discharged in each of the steps and the feed gas, is used as a gas to be separated, the outflow rate and component concentration of a second gas product are maintained at a constant by controlling the outflow rate of the first gas product.
摘要:
The gas separation and purification process can recover efficiently a valuable gas such as krypton and xenon to be used as an atmospheric gas in a semiconductor manufacturing equipment etc. by means of PSA process. In the process for separating a valuable gas in the form of purified product from a mixed gas, used as a raw gas, containing the valuable gas by means of pressure swing adsorption process, the valuable gas is separated and purified by using as the pressure swing adsorption process a combination of equilibrium pressure swing adsorption process for separating gas components based on the difference in equilibrium adsorption and rate-dependent pressure swing adsorption process for separating the gas components based on the difference in adsorption rates.
摘要:
Component contained in a gas mixture can be separated based on a PSA method and recovered with high purities at the same time, the system is simple, the system cost is low, and the operation is easy and may be used for separating oxygen and nitrogen from air or for separating noble gases and nitrogen from a gas mixture containing noble gases and nitrogen, and obtaining each gas as a product.
摘要:
An adsorbent for separating nitrogen from a mixed gas of oxygen and nitrogen is MSC wherein an oxygen and nitrogen separation ratio α and a ratio (t95/t50) of a time t50 required for adsorbing 50% of the oxygen equilibrium adsorption amount and a time t95 required for adsorbing 95% of the oxygen equilibrium adsorption amount satisfy the inequality (t95/t50)
摘要:
CMS adsorbents having suitable indexes are used to improve greatly the performance of nitrogen-producing apparatuses where nitrogen is obtained from the air with a PSA method, so as to improve the efficiency of nitrogen production. A nitrogen PSA apparatus is formed with two adsorbing columns where an adsorption step and a regeneration step are performed alternatively and periodically. The adsorption step is for adsorbing oxygen and conducting nitrogen to a product tank with the supply of compressed air from an air compressor, and the regeneration step for releasing the adsorbed gas after the adsorption step. The adsorbing columns are filled with a carbon molecular sieve (CMS) that selectively adsorbs oxygen as an adsorbent. The CMS adsorbs an oxygen/nitrogen amount of 50% of the saturated adsorption amount with a period TO/TN starting from oxygen/nitrogen supply, wherein TO is 5˜10 seconds and TN is larger than TO by more than 41 times.