摘要:
During the structural analysis of a protein or peptide by tandem mass spectroscopy, a peptide ion derived from a protein that has already been measured and that is expressed in great quantities is avoided as a tandem mass spectroscopy target. A peptide derived from a minute amount of protein, which has heretofore been difficult to analyze, can be automatically determined as a tandem mass spectroscopy target within the real time of measurement. Data concerning a protein that has already been measured and a peptide derived from the protein is automatically stored in an internal database. The stored data is collated with measured data with high accuracy to determine an isotope peak. In this way, the process of selecting a peptide peak that has not been measured as the target for the next tandem analysis can be performed within the real time of measurement and a redundant measurement of peptides derived from the same protein can be avoided. The information contained in the MSn spectrum is effectively utilized in each step of the MSn involving a multi-stage dissociation and mass spectroscopy (MSn), so that the flows for the determination of the next analysis content and the selection of the parent ion for the MSn+1 analysis, for example, can be optimized within the real time of measurement and with high efficiency and accuracy. Thus, a target of concern to the user can be subjected to tandem mass spectroscopy without wasteful measurement.
摘要:
During the structural analysis of a protein or peptide by tandem mass spectroscopy, a peptide ion derived from a protein that has already been measured and that is expressed in great quantities is avoided as a tandem mass spectroscopy target. A peptide derived from a minute amount of protein, which has heretofore been difficult to analyze, can be automatically determined as a tandem mass spectroscopy target within the real time of measurement. Data concerning a protein that has already been measured and a peptide derived from the protein is automatically stored in an internal database. The stored data is collated with measured data with high accuracy to determine an isotope peak. In this way, the process of selecting a peptide peak that has not been measured as the target for the next tandem analysis can be performed within the real time of measurement and a redundant measurement of peptides derived from the same protein can be avoided. The information contained in the MSn spectrum is effectively utilized in each step of the MSn involving a multi-stage dissociation and mass spectroscopy (MSn), so that the flows for the determination of the next analysis content and the selection of the parent ion for the MSn+1 analysis, for example, can be optimized within the real time of measurement and with high efficiency and accuracy. Thus, a target of concern to the user can be subjected to tandem mass spectroscopy without wasteful measurement.
摘要:
During the structural analysis of a protein or peptide by tandem mass spectroscopy, a peptide ion derived from a protein that has already been measured and that is expressed in great quantities is avoided as a tandem mass spectroscopy target. A peptide derived from a minute amount of protein, which has heretofore been difficult to analyze, can be automatically determined as a tandem mass spectroscopy target within the real time of measurement. Data concerning a protein that has already been measured and a peptide derived from the protein is automatically stored in an internal database. The stored data is collated with measured data with high accuracy to determine an isotope peak. In this way, the process of selecting a peptide peak that has not been measured as the target for the next tandem analysis can be performed within the real time of measurement and a redundant measurement of peptides derived from the same protein can be avoided. The information contained in the MSn spectrum is effectively utilized in each step of the MSn involving a multi-stage dissociation and mass spectroscopy (MSn), so that the flows for the determination of the next analysis content and the selection of the parent ion for the MSn+1 analysis, for example, can be optimized within the real time of measurement and with high efficiency and accuracy. Thus, a target of concern to the user can be subjected to tandem mass spectroscopy without wasteful measurement.
摘要:
The present invention provides a tandem type mass analysis system capable of carrying out the differential analysis with high efficiency by the tandem type mass analysis. A predetermined number of m/z regions are set up for carrying out the mass analysis with the all ions included therein being dissociated collectively for each m/z region so as to obtain measurement MS2 data. By comparing the measurement MS2 data with reference MS2 data stored in a reference data base, a difference thereof is detected. For the m/z region with a differential component detected, the mass analysis is carried out collectively without dissociation for the all ions included therein so as to obtain measurement MS1 data. By comparing the measurement MS1 data with the reference MS1 data, a difference thereof is detected. From the difference thereof, a parent ion considered to be the differential component factor is presumed for carrying out the mass analysis with the same being dissociated.
摘要:
The present invention provides a tandem type mass analysis system capable of carrying out the differential analysis with high efficiency by the tandem type mass analysis. A predetermined number of m/z regions are set up for carrying out the mass analysis with the all ions included therein being dissociated collectively for each m/z region so as to obtain measurement MS2 data. By comparing the measurement MS2 data with reference MS2 data stored in a reference data base, a difference thereof is detected. For the m/z region with a differential component detected, the mass analysis is carried out collectively without dissociation for the all ions included therein so as to obtain measurement MS1 data. By comparing the measurement MS1 data with the reference MS1 data, a difference thereof is detected. From the difference thereof, a parent ion considered to be the differential component factor is presumed for carrying out the mass analysis with the same being dissociated.
摘要:
According to the existing mass spectrometric system, whether or not the informations are sufficient for analyzing substances (particularly proteins, sugars, etc.) cannot be judged in the process of measurement. Further, it is difficult to find out isomers having just the same mass number or compounds very close in mass only from the MS data. According to this invention, whether or not the retention time in the LC (or GC) of peptide formed at the time of enzymatic decomposition of protein coincides with the predicted retention time assumed from the amino acid sequence predicted from MS2 mass spectrometry data is judged within the actual time period of measurement, and thereby the quality of MS2 mass spectrometry data (quantity of information) is judged.
摘要:
The present invention can provide a mass spectrometric system judging whether a measurement target is a substance required by an operator within an actual measurement time, when a substance (particularly such as protein or sugar chains) is analyzed. In the mass spectrometric system using a tandem mass spectrometer, a particular substance obtained by separating a sample is ionized, and mass analysis of the ionized substance is performed to obtain a spectrum. This spectrum is compared with a particular spectrum stored in advance, to thereby determine whether both the spectra match with each other. When a match is determined, a particular ion is further ionized within a particular time for detailed analysis. The invention also provides a mass spectrometric method, a diagnosis system and an inspection system each using the mass spectrometric system, and a program for operating a computer to control those systems with desired functions.
摘要:
The present invention can provide a mass spectrometric system judging whether a measurement target is a substance required by an operator within an actual measurement time, when a substance (particularly such as protein or sugar chains) is analyzed. In the mass spectrometric system using a tandem mass spectrometer, a particular substance obtained by separating a sample is ionized, and mass analysis of the ionized substance is performed to obtain a spectrum. This spectrum is compared with a particular spectrum stored in advance, to thereby determine whether both the spectra match with each other. When a match is determined, a particular ion is further ionized within a particular time for detailed analysis. The invention also provides a mass spectrometric method, a diagnosis system and an inspection system each using the mass spectrometric system, and a program for operating a computer to control those systems with desired functions.
摘要:
According to the existing mass spectrometric system, whether or not the informations are sufficient for analyzing substances (particularly proteins, sugars, etc.) cannot be judged in the process of measurement. Further, it is difficult to find out isomers having just the same mass number or compounds very close in mass only from the MS data. According to this invention, whether or not the retention time in the LC (or GC) of peptide formed at the time of enzymatic decomposition of protein coincides with the predicted retention time assumed from the amino acid sequence predicted from MS2 mass spectrometry data is judged within the actual time period of measurement, and thereby the quality of MS2 mass spectrometry data (quantity of information) is judged.
摘要:
An object of the present invention is to evaluate quantitatively a peptide derived from a protein, whose analysis has been difficult so far, by analyzing a peptide ion derived from a protein already measured but having a different total ion amount as the tandem mass analysis target at the time of quantitatively evaluating a fluctuating component between different kinds of specimens by the tandem mass analysis of a protein or a peptide. In the present invention, in order to achieve the above-mentioned object, data of a derived peptide obtained by a first time measurement are stored automatically in an internal database and collated with second time measurement data highly accurately. The processing for selecting the peak of the already measured peptide with the relative amount fluctuation as the next tandem analysis target is implemented within the real time of the measurement for avoiding the analysis of a peptide without the relative amount fluctuation.