摘要:
In this invention, the semiconductor device is provided with a gate electrode formed on a gate insulating film in a region sectioned by an element isolation formed on a semiconductor layer of the first conduction type, and a source region and a drain region of the second conduction type. At least one of the source region and the drain region has a first low concentration region and a high concentration region. Also, the semiconductor device of the present invention is provided with a second low concentration region of the second conduction type between a channel stopper region formed below the element isolation and the source region, and between the channel stopper region and the drain region. The semiconductor layer immediately below the gate electrode projects to the channel stopper region side along the gate electrode, and the semiconductor layer and the channel stopper region make contact with each other.
摘要:
In this invention, the semiconductor device is provided with a gate electrode formed on a gate insulating film in a region sectioned by an element isolation formed on a semiconductor layer of the first conduction type, and a source region and a drain region of the second conduction type. At least one of the source region and the drain region has a first low concentration region and a high concentration region. Also, the semiconductor device of the present invention is provided with a second low concentration region of the second conduction type between a channel stopper region formed below the element isolation and the source region, and between the channel stopper region and the drain region. The semiconductor layer immediately below the gate electrode projects to the channel stopper region side along the gate electrode, and the semiconductor layer and the channel stopper region make contact with each other.
摘要:
In this invention, the semiconductor device is provided with a gate electrode formed on a gate insulating film in a region sectioned by an element isolation formed on a semiconductor layer of the first conduction type, and a source region and a drain region of the second conduction type. At least one of the source region and the drain region has a first low concentration region and a high concentration region. Also, the semiconductor device of the present invention is provided with a second low concentration region of the second conduction type between a channel stopper region formed below the element isolation and the source region, and between the channel stopper region and the drain region. The semiconductor layer immediately below the gate electrode projects to the channel stopper region side along the gate electrode, and the semiconductor layer and the channel stopper region make contact with each other.
摘要:
A process of manufacturing inorganic nanofibers, without using an organic polymer, using a highly reactive metal alkoxide such as titanium alkoxide or zirconium alkoxide, in particular, a process in which inorganic nanofibers can be stably produced over a long period, is provided. It is a process of manufacturing inorganic nanofibers by electrospinning using a sol solution containing an inorganic component as a main component, characterized in that the sol solution contains a metal alkoxide having a high reactivity and a salt catalyst, and that the salt catalyst is an amine compound having an N—N bond, an N—O bond, an N—C═N bond, or an N—C═S bond.
摘要:
An inorganic fiber structure comprising inorganic nanofibers having an average fiber diameter of 3 μm or less, in which an entirety including the inside thereof is adhered with an inorganic adhesive, and the porosity thereof is 90% or more, is disclosed. Furthermore, a process for producing an inorganic fiber structure is disclosed, which includes (i) a step of spinning inorganic fibers by an electrospinning method, from a spinning inorganic sol solution containing a compound mainly composed of an inorganic component; (ii) a step of forming an inorganic fiber aggregate by irradiating the inorganic fibers with ions having a polarity opposite to that of the inorganic fibers to accumulate the inorganic fibers; and (iii) a step of forming an inorganic fiber structure adhering to the inorganic fiber aggregate with an inorganic adhesive in an entirety including the inside thereof, in which an adhering inorganic sol solution containing a compound mainly composed of an inorganic component is imparted to an entirety including the inside of the inorganic fiber aggregate, and an excess adhering inorganic sol solution is removed by gas-through.
摘要:
A process for manufacturing organic fibers containing an inorganic component comprising the steps of: (1) preparing an inorganic spinnable sol solution; (2) mixing the inorganic spinnable sol solution, a solvent capable of dissolving the inorganic spinnable sol solution, and an organic polymer capable of being dissolved in the solvent to prepare a spinning solution; and (3) spinning the spinning solution to form the organic fibers containing an inorganic component composed of an inorganic gel and the organic polymer, is disclosed. The inorganic spinnable sol solution preferably has a weight average molecular weight of 10,000 or more, and the inorganic spinnable sol solution is preferably prepared from a material containing a metal alkoxide having an organic substituent. According to the process of the present invention, organic fibers containing an inorganic component having an improved mechanical strength can be produced by mixing an inorganic component into an organic component, and a nonwoven fabric containing the fibers can be provided.
摘要:
An inorganic fiber structure comprising inorganic nanofibers having an average fiber diameter of 3 μm or less, in which an entirety including the inside thereof is adhered with an inorganic adhesive, and the porosity thereof is 90% or more, is disclosed. Furthermore, a process for producing an inorganic fiber structure is disclosed, which includes (i) a step of spinning inorganic fibers by an electrospinning method, from a spinning inorganic sol solution containing a compound mainly composed of an inorganic component; (ii) a step of forming an inorganic fiber aggregate by irradiating the inorganic fibers with ions having a polarity opposite to that of the inorganic fibers to accumulate the inorganic fibers; and (iii) a step of forming an inorganic fiber structure adhering to the inorganic fiber aggregate with an inorganic adhesive in an entirety including the inside thereof, in which an adhering inorganic sol solution containing a compound mainly composed of an inorganic component is imparted to an entirety including the inside of the inorganic fiber aggregate, and an excess adhering inorganic sol solution is removed by gas-through.