Abstract:
An improved SIV resistance and an improved EM resistance are achieved in the coupling structure containing copper films. A semiconductor device includes: a semiconductor substrate; a second insulating layer formed on or over the semiconductor substrate; a second barrier metal film, formed on the second insulating film, and being capable of preventing copper from diffusing into the second insulating film; and an electrically conducting film formed on the second barrier metal film so as to be in contact with the second barrier metal film, and containing copper and carbon, wherein a distribution of carbon concentration along a depositing direction in the second electrically conducting film includes a first peak and a second peak.
Abstract:
An improved SIV resistance and an improved EM resistance are achieved in the coupling structure containing copper films. A semiconductor device includes: a semiconductor substrate; a second insulating layer formed on or over the semiconductor substrate; a second barrier metal film, formed on the second insulating film, and being capable of preventing copper from diffusing into the second insulating film; and an electrically conducting film formed on the second barrier metal film so as to be in contact with the second barrier metal film, and containing copper and carbon, wherein a distribution of carbon concentration along a depositing direction in the second electrically conducting film includes a first peak and a second peak.
Abstract:
An electrochemical processing apparatus is provided, in which a substrate and an anode placed in a chamber are partitioned into a cathode region including the substrate and an anode region including the anode by placing a multi-layered structure of a filtration film and a cation exchange film so that the filtration film is positioned on the substrate side. A plating solution containing additives is introduced into the cathode region, whereby a substrate is plated.