摘要:
A transmitter may include a set of stream groups, each including two or more streams producing a set of orthogonal frequency division multiplexed (OFDM) stream-symbols and a coding unit interleaving the stream-symbols into an interleaved signal. An input bit multiplexer may route an input data signal to be divided among each of the streams. An inverse fast Fourier transform unit may operate on a combined signal formed from interleaving the interleaved signals from each stream group. Each stream may include for example a baseband signal processor producing the OFDM stream-symbols.
摘要:
In a multiple-input multiple-output (MIMO) multicarrier communication system, a mobile station sends a quantized time-domain representation of the channel transfer function to a base station for use by the base station in generating beamforming coefficients for use in subsequent transmissions to the mobile station. In some embodiments, the quantized time-domain representation of the channel transfer function may be generated from selected most significant rays of an initial estimated sampled channel impulse response. Other embodiments may be described and claimed.
摘要:
Briefly, in accordance with one embodiment of the invention, a channel estimator may be adapted to provide a channel estimate based at least in part on an estimated delay spread. The channel estimator may be adapted to provide a more accurate channel estimation in the event of a lower estimated delay spread. In one embodiment, the channel estimator provides a frequency domain channel estimate, and in another embodiment the channel estimator provides a time domain channel estimate.
摘要:
Transmission parameters for a multicarrier communication channel are selected by setting a power level for each subcarrier of an active set of subcarriers, and calculating the channel capacity based on the power levels and effective noise powers. The number of active subcarriers of the set is decreased, the power levels are reset and the channel capacity is recalculated until a final set of active subcarriers result that provide the highest channel capacity.
摘要:
The channelization of a WB OFDM channel may be determined by detecting a plurality of subchannels and generate a channelization vector indicating which of the subchannels are active and which of the subchannels are inactive. In response to the channelization vector, data-symbol processing may be performed on the active subchannels and may be refrained from being performed on the inactive subchannels. In some embodiments, a decoded bit stream may be generated from the combined contributions of the active channels. In some embodiments, the subchannels may be detected with a parallel set of matched filters. The matched filters may have a coefficient spectrum matched to a corresponding one of the subchannels.
摘要:
A transmitter may include a set of stream groups, each including two or more streams producing a set of orthogonal frequency division multiplexed (OFDM) stream-symbols and a coding unit interleaving the stream-symbols into an interleaved signal. An input bit multiplexer may route an input data signal to be divided among each of the streams. An inverse fast Fourier transform unit may operate on a combined signal formed from interleaving the interleaved signals from each stream group. Each stream may include for example a baseband signal processor producing the OFDM stream-symbols.
摘要:
An apparatus and associated methods to perform intelligent transmit power control with subcarrier puncturing in a multicarrier wireless communication channel is generally disclosed.
摘要:
An orthogonal frequency division multiplexed (OFDM) receiver achieves improved frequency synchronization by generating a fine frequency offset of an OFDM packet with a two-channel frequency offset estimation scheme. Concurrent autocorrelations are performed with training symbols delayed by one and two durations of the training symbols. The respective correlation outputs are integrated over one and a half durations and one half duration to generate phase shift estimates. The phase shift estimates are weighted and combined to generate the fine frequency offset estimate which is used to rotate the phase of OFDM data symbols prior to performing a Fast Fourier Transform (FFT) on the data symbols.
摘要:
An OFDM packet is initially detected by auto-correlating short training symbols to generate an initial packet detection signal. The initial packet detection signal may be used to initiate a coarse timing synchronization process, which may use a short symbol matched filter. A coarse timing signal may be generated from at least some of the short training symbols by correlating sampled short training symbols with short filter matched coefficients. The coarse-timing signal may be used to initiate the operation of a fine timing synchronization process, which may use a long symbol matched filter. A fine timing signal may be generated from at least some of the long training symbols by correlating sampled long training symbols with long filter-matched coefficients. The fine timing signal may be used to initiate channel estimation by performing a Fast Fourier Transform (FFT) operation on the long training symbols. The fine timing signal may also be used to initiate data signal processing using the channel estimation and may include starting an FFT operation on data symbols.