摘要:
A TC controlled RF signal detecting circuitry (211) used in the output power control circuit of a TDMA RF signal power amplifier includes positive coefficient current source (303) producing current I+ having a positive TC, negative coefficient current source (305) producing current I- having a negative TC, and current mirror (301) for summing currents I+ and I- to produce substantially identical compensated mirror currents Im1 and Im2. Anti-clamping current mirror (309) mirrors current Im2 to produce compensated currents Ia1 and Ia2, which are applied to and bias a Schottky diode coupled in series to a resistor network in each leg of diode detector (311). Each leg of diode detector (311) has a positive TC, which is substantially offset by the negative TC of compensated currents Ia1 and Ia2. Schottky diode (431) in one leg of diode detector (311) half-wave rectifies RF feedback signal (212) to produce temperature and voltage compensated power level signal (229), which has a DC level proportional to the output power level of RF output signal (214). By using TC controlled RF signal detecting circuitry (211), power level signal (229) has a DC level which is stable to within 5 mV over temperature ranging from -55.degree. C. to +125.degree. C. and over power supply voltage ranging from 2.7 V to 4.75 V.
摘要:
An input stage to an amplifier circuit (10) operating with a one volt power supply potential (32) receives a differential input signal. A charge pump (36) increases the one volt power supply potential to 1.8 volts for providing additional head-room for the differential input signal. A current source (44) controls a current mirror (40-42) to draw a predetermined current from the charge pump to supply the active conduction path of a differential transistor pair (12-14). An output stage (34) of the amplifier circuit operates off the one volt power supply potential. Since the charge pump drives only the differential transistor pair through the current mirror, it may be made small to fit on the same integrated circuit as the amplifier including any necessary pump capacitors.
摘要:
An amplifier circuit (10) receives a differential input signal and provides an amplified differential signal. A converter circuit (14) is responsive to the amplified differential signal and provides a single-ended signal. An output stage (16) is responsive to the single-ended signal for providing an output signal of the amplifier circuit. The output stage provides bias cancellation for the single-ended signal by injecting a current equal to the bias requirement of the input transistors (20, 38). The bias cancellation maintains a high input impedance and high gain and output drive for the output stage.
摘要:
A pulsed battery charger circuit (11) for charging a battery (28). A control circuit (17) is responsive to a sense circuit (16) that monitors the battery voltage. The control circuit (17) pulses a first current source (25) or a second current source (20). An amplifier (14) is responsive to the first (25) and second (20) current sources for generating first and second predetermined voltages between a drive output (12) and a sense input (13). The first current source (25) is pulsed when the sense circuit (16) senses the battery voltage to be less than a first threshold voltage. The second current source (20) is pulsed when the sense circuit (16) senses the battery voltage to be greater than the first threshold voltage. Both the first (25) and second (20) current sources are disabled when the sense circuit (16) senses the battery voltage to be greater than a second threshold voltage.
摘要:
An operational amplifier achieves higher operating speed by using an all NPN transistor output drive stage. A control circuit in output drive stage receives an input signal and providing first and second control signals. The first and second control signals in turn drive first and second NPN output drive transistors arranged in a totem pole configuration between first and second power supply conductors.
摘要:
A voltage regulator (11) having an input (12) for receiving an input current and an output (13) for providing a regulated voltage. The voltage regulator (11) comprising a diode (14), a capacitor (16), a first comparator (17), a second comparator (18), a logic circuit (19), and a switch circuit (21). The capacitor (16) is charged by the input current coupled through the diode (14). The first comparator (17) senses when the voltage on the capacitor (16) exceeds a first reference voltage and provides a signal to the logic circuit (19). The logic circuit (19) enables the switch circuit (21) for shunting the input current from charging the capacitor (19). The second comparator (18) senses when the voltage on the capacitor (16) falls below a second reference voltage and provides a signal to the logic circuit (19). The logic circuit (19) disables the switch circuit (21) from shunting the input current thereby charging the capacitor (19). Thus, the voltage at output (13) stays between the first and second predetermined voltages.
摘要:
The present invention discloses a low voltage rail-to-rail CMOS input stage. The input stage includes a differential pail of P-channel metal oxide semiconductor field effect (PMOS) transistors, which produces differential output current signal. The input stage further includes a pair of N-channel depletion-mode metal oxide semiconductor field effect (NMOS) transistors, coupled to the bulk terminals of the differential pair of PMOS transistors, for receiving an input signal. The depletion-mode NMOS transistors further act as source follower devices to drive the bulk terminals of the differential pair of PMOS transistors.
摘要:
An integrated circuit includes circuit nodes (111 and 131), a resistor (210) coupling together the nodes, a comparator (230) having two inputs and an output where a first one of the two inputs is coupled to the resistor and a first one of the nodes, and a three-terminal device (220) having a first terminal coupled to a second one of the nodes and the resistor and also having a second terminal coupled to the output of the comparator.
摘要:
An overcurrent detector circuit (21) for a power MOSFET (22) is described. The overcurrent detector circuit (21) generates a bias voltage corresponding to the drain to source voltage of the power MOSFET (22). The drain to source voltage correlates directly to the current being conducted by the power MOSFET (22). An overcurrent condition occurs when the power MOSFET (22) exceeds a predetermined current. The bias voltage is applied to a transistor (24) for generating a current. A current source (29) couples to the transistor (24). The current provided by the transistor equals the reference current of the current source (29) when the power MOSFET conducts the predetermined current. The overcurrent detector circuit (21) generates a signal indicating a overcurrent condition does not exist when the reference current is greater the current provided by the transistor. Conversely, the overcurrent detector circuit (21) generates a signal indicating the overcurrent condition when the current provided by the transistor exceeds the reference current.
摘要:
A filter circuit. In one embodiment, the filter circuit includes a continuous time (CT) filter, a switched capacitor (SWC) filter, and an SWC integrator. The CT filter is coupled to receive an input signal from an external source. The CT filter may be a low-pass filter. The SWC filter is coupled to receive an output signal from the CT filter, and provide an output information signal. The SWC filter may also be a low pass filter. A feedback loop may be present between the output of the SWC filter and the input of the CT filter. The SWC integrator samples the output signal from the SWC filter and provides an output signal to the CT filter. The output signal is combined with the input signal to the CT filter. A D.C. offset may be substantially removed from the information signal provided by the output of the SWC filter.