摘要:
A fluid cartridge including a housing, a needle extending from the housing and a plurality of circumferentially spaced sensible members carried by the housing such that each of the sensible members is circumferentially spaced from the other sensible members, and apparatus including such a cartridge in combination with a partially implantable medical device.
摘要:
An implantable stimulator includes a tube assembly that is configured to house a number of components that are configured to apply at least one stimulus to at least one stimulation site within a patient. The tube assembly has a shape that allows the stimulator to be implanted within said patient in a pre-determined orientation. Exemplary methods of stimulating a stimulation site within a patient include applying an electrical stimulation current to a stimulation site via one or more electrodes extending along one or more sides of a stimulator. The stimulator has a shape allowing the stimulator to be implanted within the patient in a pre-determined orientation.
摘要:
An implantable neurostimulation system includes both implantable and external components. Electrical connectivity between the external and implanted components is achieved through a plurality of feedthrough pins located within an insulative wall of a percutaneous port embedded in the skin. The percutaneous port has the general shape and appearance of a small thimble, embedded in the skin with its open end facing outwardly from the skin surface, and with its closed end located below the skin surface, thereby forming a cavity or dimple in the skin. Various plugs or cartridges can be removably inserted into the cavity of the percutaneous port, in various orientations, to facilitate appropriate connectivity between the external and implanted components of the system through selected ones of the feedthrough pins. A mesh edging secured around the periphery wall of the port promotes tissue ingrowth and vascularization, thereby forming a percutaneous seal around the port that prevents infection.
摘要:
An apparatus for use with a fluid cartridge is disclosed. The apparatus includes a percutaneous port including an interior configured to receive the fluid cartridge, an implantable operative portion operably connected to the percutaneous port, a cartridge sensor configured to sense movement of the fluid cartridge relative to the percutaneous port, and a controller.
摘要:
Systems for providing stimulation with an implantable system control unit and for optimally positioning that system control unit include a system control unit configured to provide a stimulus to a patient with a member attached to the system control unit for pulling the system control unit into position within the patient. Methods of optimally positioning the implantable system control unit within a patient such that the system control unit is proximal to target tissue that is to be stimulated by the system control unit include threading a member through a patient's body using a needle, the member passing proximal to the target tissue and being attached to the system control unit, and pulling the system control unit into place with the member.
摘要:
Apparatus, for use with a fluid cartridge, that include a percutaneous port having an interior configured to receive the fluid cartridge, an implantable operative portion that has a fluid transfer device with an inlet and an outlet, and delivery/manifold tube with a manifold portion and a delivery portion, are disclosed.
摘要:
An implantable neurostimulation system includes both implantable and external components. Electrical connectivity between the external and implanted components is achieved through a plurality of feedthrough pins located within an insulative wall of a percutaneous port embedded in the skin. The percutaneous port has the general shape and appearance of a small thimble, embedded in the skin with its open end facing outwardly from the skin surface, and with its closed end located below the skin surface, thereby forming a cavity or dimple in the skin. Various plugs or cartridges can be removably inserted into the cavity of the percutaneous port, in various orientations, to facilitate appropriate connectivity between the external and implanted components of the system through selected ones of the feedthrough pins. A mesh edging secured around the periphery wall of the port promotes tissue ingrowth and vascularization, thereby forming a percutaneous seal around the port that prevents infection.