Abstract:
Methods and apparatus are provided for detecting a rate of rotation. In one implementation, the method includes vibrating a proof mass at a pre-determined frequency in a drive axis. In response to a rotation, sensing an amount of deflection of the proof mass in an axis orthogonal to the drive axis, in which the amount of deflection is sensed as a change in charge. The method further includes generating a quadrature error cancellation signal to substantially cancel quadrature error from the sensed change in charge.
Abstract:
A programming method (250) for digitally programming the adjustment of an electronic trim capacitor (212, 314, 414). In an initial step (252), programming is initiated by setting an enable terminal (224). In subsequent steps (254, 256) a pulse signal (226) then applied to a program terminal (222) and the number of pulses (228) provided to the programming terminal (222) while the enable terminal (224) is set determines the total number of capacitance increments for which the electronic trim capacitor (212, 314, 414) is programmed. The electronic trim capacitor (212, 314, 414) may be incorporated into an integrated circuit (12, 312) or a module (412) and the electronic trim capacitor (212, 314, 414) may be programmed and used “in situ” in a more general circuit (1) such as an oscillator (301) or an amplifier (401).
Abstract:
A structure (110, 150) for enhancing the quality factor (Q) of a capacitive circuit (112, 152). The capacitive circuit (112, 152) includes a first resistance (122, 164), a capacitance (124, 166), and a second resistance (126, 168). The capacitance (124, 166) represents the net capacitance of the capacitive circuit (112, 152), and the first resistance (122, 164) and second resistance (126, 168) represent elements of the intrinsic resistance of the capacitive circuit (112, 152). In a one embodiment the structure (110) includes a first capacitor (128) which is connected in parallel with the capacitive circuit (112), and second capacitor (130) which is connected in series with the capacitive circuit (112). In a second embodiment the structure (150) includes a first inductor (164), connected in series between the capacitive circuit (152) and a node (162) where the first capacitor (174) and one end of the second capacitor (176) connect, and a second inductor (172) connected in series between the capacitive circuit (152) and the other end of the second capacitor (130).
Abstract:
An electronically trimable capacitor (10) having a plurality of branch circuits (30) each including a capacitor (32) which may be selectively controlled by a switch (34) to contribute or not to the net capacitance exhibited by the trimable capacitor (10). Operation of the switches (34) is under direction of an interface (36), which can receive a program signal containing digital instruction for programming via a program terminal (22). An optional memory (38) permits storing a program of states for the switches (34), so that the interface (36) maybe instructed to reset the switches (34) and thus cause the trimable capacitor (10) again provide a previously programmed net capacitance, say, in the event of power on or a power loss. An optional enable terminal (24) provides protection against inadvertent programming.
Abstract:
Methods and apparatus are provided for detecting a rate of rotation. In one implementation, the method includes vibrating a proof mass at a pre-determined frequency in a drive axis. In response to a rotation, sensing an amount of deflection of the proof mass in an axis orthogonal to the drive axis, in which the amount of deflection is sensed as a change in charge. The method further includes generating a quadrature error cancellation signal to substantially cancel quadrature error from the sensed change in charge.
Abstract:
A guided-wave electrooptic analog-to-digital converter utilizes a multiple wavelength optical source as a sampling source to minimize the number of interferometers needed for conversion of an analog signal with a given resolution. A reduction in the number of interferometers reduces the capacitive impedance of the analog signal input and facilitates driving the converter with conventional R.F. amplifiers. The multiple-wavelength signal consists of a combination of a plurality of signals with wavelengths which are substantially binary multiples of the shortest wavelength. The signals are passed together through a conventional Mach-Zehnder interferometric modulator and the interferometer output is split back into a plurality of output beams each with a single wavelength. Each of the output beams represents a bit of the digitized signal. By increasing the number of different wavelengths in the sampling signal, higher resolutions in the output signal can be obtained with a single interferometric modulator.