Abstract:
Representations of an object in an image generated by an imaging apparatus can comprise two or more separate sub-objects, producing a compound object. Compound objects can negatively affect the quality of object visualization and threat identification performance. As provided herein, a compound object can be separated into sub-objects. Three-dimensional image data of a potential compound object is projected into a two-dimensional manifold projection, and segmentation is performed on the two-dimensional manifold projection of the compound object to identify sub-objects. Once sub-objects are identified, the two-dimensional, segmented manifold projection is projected into three-dimensional space. A three-dimensional segmentation may then be performed to identify additional sub-objects of the compound object that were not identified by the two-dimensional segmentation.
Abstract:
Representations of an object in an image generated by an imaging apparatus can comprise two or more separate sub-objects, producing a compound object. Compound objects can negatively affect the quality of object visualization and threat identification performance. As provided herein, a compound object can be separated into sub-objects. Three-dimensional image data of a potential compound object is projected into a two-dimensional manifold projection, and segmentation is performed on the two-dimensional manifold projection of the compound object to identify sub-objects. Once sub-objects are identified, the two-dimensional, segmented manifold projection is projected into three-dimensional space. A three-dimensional segmentation may then be performed to identify additional sub-objects of the compound object that were not identified by the two-dimensional segmentation.
Abstract:
A CT scanning system may include a multi-pixel x-ray source, and a detector array. The multi-pixel x-ray source may have a plurality of pixels that are disposed along a z-axis, and that are sequentially activated so as to controllably emit x-rays in response to incident electrons. The detector array may have one or more rows of x-ray detectors that detect the x-rays that are emitted from the pixels and have traversed an object, and generate data for CT image reconstruction system. In third generation CT scanning systems, the number of detector rows may be reduced. Multi-pixel x-ray source implementation of saddle curve geometry may render a single rotation single organ scan feasible. Using a multi-pixel x-ray source in stationary CT scanning systems may allow x-ray beam design with a minimal coverage to satisfy mathematical requirements for reconstruction.
Abstract:
A CT scanning system may include a multi-pixel x-ray source, and a detector array. The multi-pixel x-ray source may have a plurality of pixels that are disposed along a z-axis, and that are sequentially activated so as to controllably emit x-rays in response to incident electrons. The detector array may have one or more rows of x-ray detectors that detect the x-rays that are emitted from the pixels and have traversed an object, and generate data for CT image reconstruction system. In third generation CT scanning systems, the number of detector rows may be reduced. Multi-pixel x-ray source implementation of saddle curve geometry may render a single rotation single organ scan feasible. Using a multi-pixel x-ray source in stationary CT scanning systems may allow x-ray beam design with a minimal coverage to satisfy mathematical requirements for reconstruction.