NANOIMPRINTED ELECTRODES FOR FUEL CELLS
    1.
    发明申请
    NANOIMPRINTED ELECTRODES FOR FUEL CELLS 审中-公开
    用于燃料电池的纳米电极

    公开(公告)号:US20090075142A1

    公开(公告)日:2009-03-19

    申请号:US12210481

    申请日:2008-09-15

    CPC classification number: H01M8/1004 H01M4/8605 H01M4/8817 H01M4/92 H01M8/1097

    Abstract: Nanoimprint lithography (NIL) method to fabricate electrodes with high specific Pt surface areas that can be used in fuel cell devices. The Pt catalyst structures were found to have electrochemical active surface areas (EAS) ranging from 0.8 to 1.5 m2g−1 Pt. These NIL catalyst structures include fuel cell membrane electrode assemblies (MEA) that are prepared by directly embossing a Nafion membrane. The features of the mold were transferred to the Nafion® and a thin film of Pt was deposited at a wide angle to form the anode catalyst layer. The resulting MEA yielded a Pt utilization of 15,375 mW mg−1 Pt compared to conventionally prepared MEAs (820 mW mg−1 Pt).

    Abstract translation: 纳米压印光刻(NIL)方法来制造可用于燃料电池装置的具有高特异性Pt表面积的电极。 发现Pt催化剂结构的电化学活性表面积(EAS)为0.8〜1.5 m2g-1 Pt。 这些NIL催化剂结构包括通过直接压花Nafion膜制备的燃料电池膜电极组件(MEA)。 将模具的特征转移到Nafion上,并以广角沉积Pt薄膜以形成阳极催化剂层。 与常规制备的MEA(820mW mg-1 Pt)相比,所得MEA产生15,375mW mg-1 Pt的Pt利用率。

    Bulk metallic glass nanowires for use in energy conversion and storage devices
    2.
    发明授权
    Bulk metallic glass nanowires for use in energy conversion and storage devices 有权
    用于能量转换和存储设备的散装金属玻璃纳米线

    公开(公告)号:US09343748B2

    公开(公告)日:2016-05-17

    申请号:US13702288

    申请日:2011-08-08

    Abstract: A class of materials has advantageous utility in electrocatalytic applications, e.g., fuel cells. The materials circumvent conventional Pt-based anode poisoning and the agglomeration/dissolution of supported catalysts during long-term operation by exploiting the unique physical and chemical properties of bulk metallic glass to create nanowires for electrocatalytic applications, e.g., fuel cell and battery applications. These amorphous metals can achieve unusual geometries and shapes along multiple length scales. The absence of crystallites, grain boundaries and dislocations in the amorphous structure of bulk metallic glasses results in a homogeneous and isotropic material down to the atomic scale, which displays very high strength, hardness, elastic strain limit and corrosion resistance. The melting temperatures of the disclosed bulk metallic glasses are much lower than the estimated melting temperatures based on interpolation of the alloy constituents making them attractive as highly malleable materials.

    Abstract translation: 一类材料在电催化应用中是有利的,例如燃料电池。 该材料通过利用大块金属玻璃的独特的物理和化学性质来产生用于电催化应用的纳米线,例如燃料电池和电池应用,避免了常规的Pt基阳极中毒和长期运行期间负载催化剂的聚集/溶解。 这些非晶态金属可以沿着多个长度尺度实现异常的几何形状和形状。 在本体金属玻璃的无定形结构中不存在微晶,晶界和位错,导致均匀且各向同性的材料直到原子尺度,其显示出非常高的强度,硬度,弹性应变极限和耐腐蚀性。 所公开的本体金属玻璃的熔融温度远远低于基于合金成分插值的估计熔融温度,使得它们作为高度可延展的材料是有吸引力的。

    BULK METALLIC GLASS NANOWIRES FOR USE IN ENERGY CONVERSION AND STORAGE DEVICES
    4.
    发明申请
    BULK METALLIC GLASS NANOWIRES FOR USE IN ENERGY CONVERSION AND STORAGE DEVICES 有权
    用于能量转换和存储设备的大块金属玻璃纳米管

    公开(公告)号:US20130150230A1

    公开(公告)日:2013-06-13

    申请号:US13702288

    申请日:2011-08-08

    Abstract: A class of materials has advantageous utility in electrocatalytic applications, e.g., fuel cells. The materials circumvent conventional Pt-based anode poisoning and the agglomeration/dissolution of supported catalysts during long-term operation by exploiting the unique physical and chemical properties of bulk metallic glass to create nanowires for electrocatalytic applications, e.g., fuel cell and battery applications. These amorphous metals can achieve unusual geometries and shapes along multiple length scales. The absence of crystallites, grain boundaries and dislocations in the amorphous structure of bulk metallic glasses results in a homogeneous and isotropic material down to the atomic scale, which displays very high strength, hardness, elastic strain limit and corrosion resistance. The melting temperatures of the disclosed bulk metallic glasses are much lower than the estimated melting temperatures based on interpolation of the alloy constituents making them attractive as highly malleable materials.

    Abstract translation: 一类材料在电催化应用中是有利的,例如燃料电池。 该材料通过利用大块金属玻璃的独特的物理和化学性质来产生用于电催化应用的纳米线,例如燃料电池和电池应用,避免了常规的Pt基阳极中毒和长期运行期间负载催化剂的聚集/溶解。 这些非晶态金属可以沿着多个长度尺度实现异常的几何形状和形状。 在本体金属玻璃的无定形结构中不存在微晶,晶界和位错,导致均匀且各向同性的材料直到原子尺度,其显示出非常高的强度,硬度,弹性应变极限和耐腐蚀性。 所公开的本体金属玻璃的熔融温度远远低于基于合金成分插值的估计熔融温度,使得它们作为高度可延展的材料是有吸引力的。

    INKJET PRINTING OF MATERIALS FOR USE IN FUEL CELLS
    5.
    发明申请
    INKJET PRINTING OF MATERIALS FOR USE IN FUEL CELLS 审中-公开
    用于燃料电池的材料的喷墨打印

    公开(公告)号:US20090074956A1

    公开(公告)日:2009-03-19

    申请号:US12210615

    申请日:2008-09-15

    Inventor: Andre D. Taylor

    Abstract: A method of using inkjet printing (IJP) to deposit catalyst materials onto substrates such as gas diffusion layers (GDLs) that in one application are made into membrane electrode assemblies (MEAs) for polymer electrolyte fuel cells (PEMFC). The inventive IJP method can deposit smaller volumes of water-based catalyst ink solutions with picoliter precision. By optimizing the dispersion of the ink solution, this technique can be used with catalysts supported on different specimens of carbon black.

    Abstract translation: 使用喷墨印刷(IJP)将催化剂材料沉积到诸如气体扩散层(GDL)的基底上的方法,其在一个应用中被制成用于聚合物电解质燃料电池(PEMFC)的膜电极组件(MEA)。 本发明的IJP方法可以以皮升精度沉积较小体积的水基催化剂油墨溶液。 通过优化油墨溶液的分散性,该技术可与负载在不同炭黑样品上的催化剂一起使用。

Patent Agency Ranking