摘要:
A zone analysis system and method (211) optimize speed and minimize adverse effects resulting from noise in an inspection system (90) for measuring disparity between two surfaces. In particular, the zone analysis system and method (211) can be implemented in an inspection system (90) for contactlessly measuring undercut or protrusion of an optical fiber (26) relative to a surrounding support material (36) at the endface (79) of an optical fiber termination (37). In structure, the inspection system (90) has a measurement apparatus (91) with an interferometer (98) controlled by a machine vision system (92) for determining the degree of disparity. The inspection system (90) measures an offset of an interferometric fringe (113') produced by the interferometer (98) over the target (82) in the image in order to determine the disparity. Further, the machine vision system (92) employs the zone analysis system and method (211) for optimizing the performance thereof.
摘要:
A self-calibration system and method (125) determines the adequacy of an interferometer angle .phi. and surface curvatures in an inspection system (90). The inspection system (90) can contactlessly measure the disparity between two surfaces, such as the undercut or protrusion of an optical fiber (26) relative to a surrounding support material (36) at the endface (79) of an optical fiber termination (37). The inspection system (90) measures an offset of the fringe (113') in the image over the target (25') in the image (111a, 111b, 111c) in order to determine the disparity. In structure, the inspection system (90) has a measurement apparatus (91) with an interferometer (98) situated at the angle .phi. relative to the target (82) controlled by a machine vision system (92) for determining the degree of disparity. Further, the machine vision system (92) preferably employs the self-calibration system and method (125).
摘要:
A two-phase autofocusing system (123,124) automatically and precisely positions an interferometric fringe (113') over a target (25') in an image (111a, 111b, 111c). The autofocusing system (123, 124) can be implemented in an automatic inspection system (90) for contactlessly measuring disparity between two surfaces, such as undercut or protrusion of an optical fiber (26) relative to a surrounding support material (36) at the endface (79) of an optical fiber termination (37). The inspection system (90) measures an offset of the fringe (113') at the target (25') in the image in order to determine the disparity. In structure, the inspection system (90) has a measurement apparatus (91) with an interferometer (98) controlled by a machine vision system (92) for determining the degree of disparity. Further, the machine vision system (92) employs the two-phase autofocusing system (123, 124).
摘要:
A band matching system and method (213a) enables accurate determination of a disparity between two surfaces using an interferometer. The band matching system and method (213a) can be implemented in an automatic inspection system (90) for contactlessly measuring undercut or protrusion of an optical fiber (26) relative to a surrounding support material (36) at the endface (79) of an optical fiber termination (37). The inspection system (90) measures an offset of the fringe (113') at the target (82) in the image in order to determine the disparity. In structure, the inspection system (90) has a measurement apparatus (91) with an interferometer (98) controlled by a machine vision system (92) for determining the degree of disparity. Further, the machine vision system (92) employs the band matching system and method (213a) for enhancing the performance of the inspection system (90) and the ultimate calculation of the disparity.
摘要:
A method of controlling an optical fiber splicing machine utilizes a power control mode to control the amount of power delivered to fuse the fibers. In the power control mode, the attenuation is measured while the fusing process is occurring. The power control mode shuts down the splicer when the measured insertion loss is less than or equal to the target insertion loss value plus a margin value. The margin value accounts for the transient attenuation difference value indicative of the changing attenuation as the splice cools. If the desired attenuation is not achieved, an energy control mode is utilized which controls the amount of energy delivered to fuse the fibers. After delivering this energy, the method measures the attenuation. If not within desired values, the energy mode is repeated. At each iteration the splicing control function utilized by the energy control mode may be reprogrammed. With these techniques, optical fibers may be spliced having a controlled attenuation to within +/−0.1 dB or better. A system for performing the attenuating splice uses, in addition to a optical fiber splicing machine, a laser and power meter to measure insertion loss as well as a controller to implement the splicing methods.
摘要:
An apparatus for integrating steps of a process for interconnecting optical fibers. The apparatus contains a planar surface having a plurality of openings. A plurality of optical fiber processing modules are suspended within the plurality of openings, with each of the modules configured to execute a different step of the optical fiber interconnection process. A material transfer mechanism, such as a robot arm, is arranged above the planar surface and is connected to a controller. The apparatus can incorporate an optical fiber precision handling tool, which holds, transports and aligns the fibers to be processed. The robot arm is operative to pick-up and move the optical fiber precision handling tool between the plurality of modules. This allows the optical fibers to be transferred through a series of process steps without having to re-secure or re-orient the fibers between the steps.
摘要:
A calibration apparatus and method for a polishing machine includes a ferrule surrounding a polishing pad and a plurality of sensors attached to the ferrule. Each of the sensors is directed at a location where optical fibers extending downwardly from a leveling device contact the polishing pad. The sensors are infrared sensors that detect a heat signature generated by friction at the contact point between the optical fibers and the polishing pad as the polishing pad spins and revolves relative to the leveling device. The heat signature that is generated corresponds to the pressure existing between the optical fibers and the polishing pad.
摘要:
A segment detection system automatically, contactlessly, rapidly, and precisely detects a segment along an edge, such as a boundary, of an object in a digitized image. The segment detection system includes an imager for capturing an image of an object and converting the image into an electrical signal. A computer is connected to the camera for receiving the electrical signal. A machine vision system is associated with the computer and is adapted to analyze the image. A segment detection program is disposed in the computer for driving the computer and the machine vision system in accordance with the present invention. The segment detection program includes an initialization subroutine and a matching subroutine. The initialization subroutine configures the program to search for a particular target polynomial equation. The matching subroutine derives a test polynomial equation that represents a test segment from a test edge of the object based upon an analysis of the image. Further, the matching subroutine determines whether the test segment matches the target segment by comparing corresponding coefficients of the test polynomial equation and the target polynomial equation.
摘要:
A method of controlling an optical fiber splicing machine utilizes an optimized power control mode to control the amount of power delivered to fuse the fibers. The attenuation is measured while the fusing process is occurring and a final jump value is calculated. The final jump value is indicative of the transient attenuation difference that occurs as the splice cools. The optimized power control mode shuts down the splicer when the measured insertion loss is less than or equal to the difference between the estimated final jump value and the desired attenuation. The final jump value may also be recalculated as further data are gathered during the splicing process. If the desired attenuation is not achieved, an optimized energy control mode is utilized which determines optimal energy settings and controls the amount of energy delivered to fuse the fibers. After delivering this energy, the method measures the attenuation. If not within desired values, the optimized energy mode is repeated. At each iteration the energy settings are re-determined and the splicing control function utilized by the splicer may be reprogrammed. Furthermore, the estimation parameters used to estimate the final jump may be adjusted between each iteration of the optimized power control mode. These adjustments as well as the determination of the energy settings may be aided by a knowledge base and intelligent control techniques that learn as a greater number of splicing operations are performed.
摘要:
A workstation for use in the assembly of component parts includes a computer terminal having a display and at least one input device, a test apparatus operatively coupled to the computer terminal, and an application program which generates a first display screen for display of an assembly procedure to be followed by an assembler on the display of the computer terminal and a second display screen for display of test results obtained by the test apparatus on said display of said computer terminal. In the case where at least one of multiple assembly steps includes a test function, the application program automatically performs the test function using the test equipment and inhibits display of a next assembly step in the event that results of the test function are outside predetermined parameters.