摘要:
Business applications running on a content delivery network (CDN) having a distributed application framework can create, access and modify state for each client. Over time, a single client may desire to access a given application on different CDN edge servers within the same region and even across different regions. Each time, the application may need to access the latest “state” of the client even if the state was last modified by an application on a different server. A difficulty arises when a process or a machine that last modified the state dies or is temporarily or permanently unavailable. The present invention provides techniques for migrating session state data across CDN servers in a manner transparent to the user. A distributed application thus can access a latest “state” of a client even if the state was last modified by an application instance executing on a different CDN server, including a nearby (in-region) or a remote (out-of-region) server.
摘要:
Business applications running on a content delivery network (CDN) having a distributed application framework can create, access and modify state for each client. Over time, a single client may desire to access a given application on different CDN edge servers within the same region and even across different regions. Each time, the application may need to access the latest “state” of the client even if the state was last modified by an application on a different server. A difficulty arises when a process or a machine that last modified the state dies or is temporarily or permanently unavailable. The present invention provides techniques for migrating session state data across CDN servers in a manner transparent to the user. A distributed application thus can access a latest “state” of a client even if the state was last modified by an application instance executing on a different CDN server, including a nearby (in-region) or a remote (out-of-region) server.
摘要:
Business applications running on a content delivery network (CDN) having a distributed application framework can create, access and modify state for each client. Over time, a single client may desire to access a given application on different CDN edge servers within the same region and even across different regions. Each time, the application may need to access the latest “state” of the client even if the state was last modified by an application on a different server. A difficulty arises when a process or a machine that last modified the state dies or is temporarily or permanently unavailable. The present invention provides techniques for migrating session state data across CDN servers in a manner transparent to the user. A distributed application thus can access a latest “state” of a client even if the state was last modified by an application instance executing on a different CDN server, including a nearby (in-region) or a remote (out-of-region) server.
摘要:
Business applications running on a content delivery network (CDN) having a distributed application framework can create, access and modify state for each client. Over time, a single client may desire to access a given application on different CDN edge servers within the same region and even across different regions. Each time, the application may need to access the latest “state” of the client even if the state was last modified by an application on a different server. A difficulty arises when a process or a machine that last modified the state dies or is temporarily or permanently unavailable. The present invention provides techniques for migrating session state data across CDN servers in a manner transparent to the user. A distributed application thus can access a latest “state” of a client even if the state was last modified by an application instance executing on a different CDN server, including a nearby (in-region) or a remote (out-of-region) server.
摘要:
An application deployment model for enterprise applications to enable applications to be deployed to and executed from a globally distributed computing platform, such as an Internet content delivery network (CDN). According to the invention, application developers separate their Web application into two layers: a highly distributed edge layer and a centralized origin layer. In a representative embodiment, the edge layer supports a servlet container that executes a Web tier, typically the presentation layer of a given Java-based application. Where necessary, the edge layer communicates with code running on an origin server to respond to a given request. In an alternative embodiment, the edge layer supports a more fully-provisioned application server that executes both Web tier (e.g., presentation) and Enterprise tier application (e.g., business logic) components. In either case, the inventive framework enables one or more different applications to be deployed to and executed from the edge server on behalf of one or more respective entities.
摘要:
An application deployment model for enterprise applications to enable such applications to be deployed to and executed from a globally distributed computing platform, such as an Internet content delivery network (CDN). According to the invention, application developers separate their Web application into two layers: a highly distributed edge layer and a centralized origin layer. In a representative embodiment, the edge layer supports a servlet container that executes a Web tier, typically the presentation layer of a given Java-based application. Where necessary, the edge layer communicates with code running on an origin server to respond to a given request. In an alternative embodiment, the edge layer supports a more fully-provisioned application server that executes both Web tier (e.g., presentation) and Enterprise tier application (e.g., business logic) components. In either case, the inventive framework enables one or more different applications to be deployed to and executed from the edge server on behalf of one or more respective entities.
摘要:
Business applications running on a content delivery network (CDN) having a distributed application framework can create, access and modify state for each client. Over time, a single client may desire to access a given application on different CDN edge servers within the same region and even across different regions. Each time, the application may need to access the latest “state” of the client even if the state was last modified by an application on a different server. A difficulty arises when a process or a machine that last modified the state dies or is temporarily or permanently unavailable. The present invention provides techniques for migrating session state data across CDN servers in a manner transparent to the user. A distributed application thus can access a latest “state” of a client even if the state was last modified by an application instance executing on a different CDN server, including a nearby (in-region) or a remote (out-of-region) server.
摘要:
An application deployment model for enterprise applications to enable applications to be deployed to and executed from a globally distributed computing platform, such as an Internet content delivery network (CDN). According to the invention, application developers separate their Web application into two layers: a highly distributed edge layer and a centralized origin layer. In a representative embodiment, the edge layer supports a servlet container that executes a Web tier, typically the presentation layer of a given Java-based application. Where necessary, the edge layer communicates with code running on an origin server to respond to a given request. In an alternative embodiment, the edge layer supports a more fully-provisioned application server that executes both Web tier (e.g., presentation) and Enterprise tier application (e.g., business logic) components. In either case, the inventive framework enables one or more different applications to be deployed to and executed from the edge server on behalf of one or more respective entities.
摘要:
The present invention provides a method for obtaining predicable and repeatable output results in a continuous processing system. The method involves processing messages and primitives in accordance with the following rules: (1) Messages are processed in accordance with timestamps, where messages are divided up into “time slices”; (2) message order within a data stream is preserved among messages with the same time stamp; (3) subject to rule #4, for each time slice, a primitive is executed when either the messages within such time slice show up in the input stream for such primitive or the state of the window immediately preceding such primitive changes due to messages within such time slice; and (4) for each time slice, primitives that are dependent on one or more upstream primitives are not executed until such upstream primitives have finished executing messages in such time slice that are queued for processing. If such rules are insufficient to determine the order in which primitives are processed, a deterministic “tie-breaking” rule is then applied.
摘要:
A method for processing messages ensures that every message that enters a continuous processing system is fully processed in its entirety, even in the event of a failure within the system. Messages are pushed through an execution plan that includes a set of connected “primitives” that process the message, where the primitives may be distributed across a group of servers. Messages are pushed through in accordance with a protocol that does not permit unprocessed messages to be permanently lost as they travel from input sources, between primitives, and to output sources within the execution plan. The input queue, output queue, and state (if any) associated with each primitive are saved in persistent storage at select checkpoints. If a failure occurs on a server, the server, after it starts up again, restores the primitives on that server to the input queues, output queues, and states saved at the last applicable checkpoint.