Abstract:
A data processing system includes first and second power distribution networks to provide power at first and second voltages, and a flip-flop. The second voltage is less than the first voltage. The flip-flop includes a master latch with a power node connected to the first power distribution network, a data signal input, and an output signal output that is driven at the first voltage, and a slave latch with a power node connected to the first power distribution network, an input coupled to the output of the master latch, a slave latch output signal output that is driven by the first voltage, and a feedback circuit with a first latch inverter having a power node connected to the second voltage, an input coupled to the master latch output, and an output terminal to provide an output signal that is driven by the second voltage.
Abstract:
A data processing system includes first and second power distribution networks to provide power at first and second voltages, and a flip-flop. The second voltage is less than the first voltage. The flip-flop includes a master latch with a power node connected to the first power distribution network, a data signal input, and an output signal output that is driven at the first voltage, and a slave latch with a power node connected to the first power distribution network, an input coupled to the output of the master latch, a slave latch output signal output that is driven by the first voltage, and a feedback circuit with a first latch inverter having a power node connected to the second voltage, an input coupled to the master latch output, and an output terminal to provide an output signal that is driven by the second voltage.
Abstract:
A method includes determining a first operational characteristic representative of an operational speed of a circuit device at a first time. The method further includes receiving an input signal at an input of a first latch of the circuit device and receiving an output signal at an input of a second latch of the circuit device. The method additionally includes delaying a clock signal by a first delay to provide a first adjusted clock signal and delaying the clock signal by a second delay to provide a second adjusted clock signal. In one embodiment, the first delay and the second delay are based on the first operational characteristic. The method further includes latching the input signal at the first latch responsive to the first adjusted clock signal and latching the output signal at the second latch responsive to the second adjusted clock signal.
Abstract:
A system an method of designing an integrated circuit identifies a plurality of synchronous cells of an integrated circuit to be driven by a clock driver, wherein the plurality of synchronous cells are a subset of previously placed cells of the integrated circuit. The placement of synchronous cells is performed to reduce a current needed from the clock driver to drive the plurality of synchronous cells.
Abstract:
A method includes determining a first operational characteristic representative of an operational speed of a circuit device at a first time. The method further includes receiving an input signal at an input of a first latch of the circuit device and receiving an output signal at an input of a second latch of the circuit device. The method additionally includes delaying a clock signal by a first delay to provide a first adjusted clock signal and delaying the clock signal by a second delay to provide a second adjusted clock signal. In one embodiment, the first delay and the second delay are based on the first operational characteristic. The method further includes latching the input signal at the first latch responsive to the first adjusted clock signal and latching the output signal at the second latch responsive to the second adjusted clock signal.
Abstract:
A memory controller (26) compares the current address and the previous address sent by a microprocessor (12). If the addresses are DRAM addresses and the current row address matches the previous row address, i.e. same DRAM page access, then the memory controller disables caching (28) of the same DRAM page access. The same DRAM page access disables caching because the same DRAM page access is not substantially longer than a cache access. A counter (50) and comparator (52) allows the memory controller to hold off some number of same DRAM page accesses before disabling caching to give time for the memory controller to set up to the new page.
Abstract:
Systems and methods for positioning horizontal wells within a limited-pre-defined boundary. The systems and methods include an automated process for creating jointed target pairs or horizontal laterals to be utilized for planning horizontal wells in order to position the horizontal laterals within limited pre-defined boundary(ies).
Abstract:
Systems and methods for positioning horizontal wells within a limited-pre-defined boundary. The systems and methods include an automated process for creating jointed target pairs or horizontal laterals to be utilized for planning horizontal wells in order to position the horizontal laterals within limited pre-defined boundary(ies).
Abstract:
A method and system for transmitting binary-coded data use partitioning of data words in a plurality of data nibbles. The data nibbles are coded using modified a 1-bit hot coding format that transforms a data nibble in a data segment including a plurality of bit groups. A change in a digital state at a bit position in a more significant bit group is maintained at that bit position in less significant bit groups, and information is transmitted in a form of a transition between digital states. The data segments are transmitted in phases each including one bit group from each data segment. At a receiving terminal, the bit groups are converted back in the binary-coded data words. In one application, the invention is used to reduce power consumption during data transmissions to and from an integrated circuit device.
Abstract:
A circuit for processing a first image including two image supply blocks, two image processing units, a control unit and a plurality of buses. The image supply blocks assert selected lines of image data onto a respective one of first and second plurality of buses. The image processing units each process the data according to respective algorithms and provide respective update ok signals that each indicate that the respective image processing unit has completed use of the first sub-portion of data. The image supply blocks provide respective update signals to the image processing units in response to the update ok signals from both of the image processing units, transfer data from the second sub-portion to the first, and assert new data on the second sub-portion. Each image processing unit, in response to receiving both update signals, changes state to track the data without losing bus cycles to maintain performance.