摘要:
A hermetically sealed lamp having at least one seal-material-free bond. The seal material-free bond may be a material diffusion bond, a mechanically deformed bond such as a cold weld or crimp, a focused heat bond such as a laser bond, or any other such bond. For example, the hermetically sealed lamp may have one or more endcaps diffusion bonded to an arc envelope, such as a ceramic tube or bulb. The hermetically sealed lamp also may have one or more tubular structures, such as dosing tubes, which are mechanically closed via cold welding or crimping. Localized heating, such as the heat provided by an intense laser, also may be used to enhance any of the foregoing bonds.
摘要:
A hermetically sealed lamp having at least one seal-material-free bond. The seal material-free bond may be a material diffusion bond, a mechanically deformed bond such as a cold weld or crimp, a focused heat bond such as a laser bond, or any other such bond. For example, the hermetically sealed lamp may have one or more endcaps diffusion bonded to an arc envelope, such as a ceramic tube or bulb. The hermetically sealed lamp also may have one or more tubular structures, such as dosing tubes, which are mechanically closed via cold welding or crimping. Localized heating, such as the heat provided by an intense laser, also may be used to enhance any of the foregoing bonds.
摘要:
A hermetically sealed lamp having at least one seal-material-free bond. The seal material-free bond may be a material diffusion bond, a mechanically deformed bond such as a cold weld or crimp, a focused heat bond such as a laser bond, or any other such bond. For example, the hermetically sealed lamp may have one or more endcaps diffusion bonded to an arc envelope, such as a ceramic tube or bulb. The hermetically sealed lamp also may have one or more tubular structures, such as dosing tubes, which are mechanically closed via cold welding or crimping. Localized heating, such as the heat provided by an intense laser, also may be used to enhance any of the foregoing bonds.
摘要:
A hermetically sealed lamp having at least one end-to-end seal. The end-to-end seal may be a material diffusion bond, a seal-material bond, or any other suitable bond. For example, the hermetically sealed lamp may have one or more endcaps butt-sealed to an arc envelope, such as a ceramic tube or bulb. The hermetically sealed lamp also may have one or more tubular structures, such as dosing tubes, which are butt-sealed to the endcap and/or arc envelope. Localized heating, such as the heat provided by an intense laser, also may be used to enhance any of the foregoing bonds.
摘要:
A system and method for hermetically sealing a lamp. Certain embodiments of the lamp have an arc envelope having an open end and, also, an end structure diffusion bonded to the arc envelope at the open end. The end structure also has a dosing passageway extending into the arc envelope. In other embodiments, a lighting device is provided with an end structure adapted to close an open end of an arc envelope, and a dosing tube diffusion bonded to the end structure. Another embodiment of the lighting device has an arc envelope and an end structure diffusion bonded to an open end of the arc envelope.
摘要:
A hermetically sealed lamp having at least one end-to-end seal. The end-to-end seal may be a material diffusion bond, a seal-material bond, or any other suitable bond. For example, the hermetically sealed lamp may have one or more endcaps butt-sealed to an arc envelope, such as a ceramic tube or bulb. The hermetically sealed lamp also may have one or more tubular structures, such as dosing tubes, which are butt-sealed to the endcap and/or arc envelope. Localized heating, such as the heat provided by an intense laser, also may be used to enhance any of the foregoing bonds.
摘要:
An arc tube in a high intensity discharge lamp comprises an arc body comprising a single-phase first ceramic material has a first elemental composition, and the arc body has a sealed chamber. At least two legs are attached to the arc body, and at least one of the legs has a single-phase second ceramic material having a second elemental composition that is different from the first elemental composition. An electrode is positioned within a respective leg, each electrode has a tip positioned within the chamber and the tips of the electrodes are spaced apart forming an arc region there between.
摘要:
A two dimensional collimator assembly and method of manufacturing thereof is disclosed. The collimator assembly includes a wall structure constructed to form a two dimensional array of channels to collimate x-rays. The wall structure further includes a first portion positioned proximate the object to be scanned and configured to absorb scattered x-rays and a second portion formed integrally with the first portion and extending out from the first portion away from the object to be scanned. The first portion of the wall structure has a height greater than a height of the second portion of the wall structure. The second portion of the wall structure includes a reflective material coated thereon in each of the channels forming the two dimensional array of channels.
摘要:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.