摘要:
Numerical gas turbine models permit transient modeling with high precision and at the same time numerically efficient processes for modeling a gas turbine. A gas turbine model includes a plurality of sub models. These sub models are either purely dynamic or static, which allows significant simplifications in the numerical solution of the overall model. System parts, which simulate the effects of volumes, metal masses, of actuators, and of measuring systems are regarded as dynamic. The remaining system parts are regarded as static over a time characteristic.
摘要:
A method is provided for operating a gas turbine, which especially feeds power to a local isolated power supply network, and which comprises a compressor for compressing combustion air which is drawn in from the environment, a combustion chamber for combusting supplied fuel by the compressed combustion air, a turbine which is driven by the hot gas from the combustion chamber, and a generator, which is driven by the turbine, for generating electric power. With such a method, an improvement of controlling is achieved by one or more parameters of the gas turbine being measured or determined, by the effective thermal output power of the gas turbine being calculated from the measured or determined parameters, and by the calculated effective thermal output power being used for controlling the gas turbine.
摘要:
Numerical gas turbine models permit transient modeling with high precision and at the same time numerically efficient processes for modeling a gas turbine. A gas turbine model includes a plurality of sub models. These sub models are either purely dynamic or static, which allows significant simplifications in the numerical solution of the overall model. System parts, which simulate the effects of volumes, metal masses, of actuators, and of measuring systems are regarded as dynamic. The remaining system parts are regarded as static over a time characteristic.
摘要:
A system for controlling NOx emissions and combustion pulsation levels of a gas turbine having a gas turbine combustion system, having a single combustion chamber and multiple burners, includes a cascade structure having a first and second control level (1, 2), the first level (1) having a device to control NOx emissions and generate combustion pulsation target levels based on the difference between measured and target NOx emission levels, and the second level (2) having a device to control pulsation levels and generate a ratio (γ) of fuel flow to different types of burners or to different stages of each burner. The fuel flow ratio (γ) is based on the difference between the measured and generated target pulsation levels. The control system enables the operation of a gas turbine to meet NOx emission requirements, while maintaining combustion pulsation levels within limits that ensure improved lifetime of the combustion system.
摘要:
A method for ascertaining process values for a process control is provided. The method includes detecting a measured value, providing a model that simulates the process, and, on the basis of the model, calculating a calculated real value and a calculated measured value. The method also includes comparing the calculated real value with the calculated measured value to obtain a delay compensation value, and adding the delay compensation value to the measured value to obtain an accelerated value indicative of the process value to be ascertained.
摘要:
A system (S) for controlling nitrogen oxide (NOx) emissions and combustion pulsation levels of a gas turbine having a gas turbine combustion system, having a single combustion chamber and multiple burners, includes a cascade structure having a first and second control level (1, 2), the first level (1) having a device to control NOx emissions and generate combustion pulsation target levels based on the difference between measured and target NOx emission levels, and the second level (2) having a device to control pulsation levels and generate a ratio (γ) of fuel flow to different types of burners or to different stages of each burner. The fuel flow ratio (γ) is based on the difference between the measured and generated target pulsation levels. The control system (S) enables the operation of a gas turbine to meet NOx emission requirements, while maintaining combustion pulsation levels within limits that ensure improved lifetime of the combustion system.
摘要:
Exemplary embodiments relate to a method and system for transient operating of a gas turbine. Operation of the gas turbine the controller determines command values for an inlet air mass flow, fuel mass flow, and for a water or steam mass flow. In order to allow fast transient operation with a stable premix flame at least one command value is dynamically compensated to compensate for the different system dynamics of the supply systems to synchronize the resulting changes in fuel, water, steam, and/or combustion air mass flows, which reach the combustor, so that the fuel to air ratio stays within the combustible limit.
摘要:
A method for ascertaining process values for a process control is provided. The method includes detecting a measured value, providing a model that simulates the process, and, on the basis of the model, calculating a calculated real value and a calculated measured value. The method also includes comparing the calculated real value with the calculated measured value to obtain a delay compensation value, and adding the delay compensation value to the measured value to obtain an accelerated value indicative of the process value to be ascertained.