Abstract:
This application relates to determining uniformity of a housing for a computing device based on characteristics of a reflected pattern of light incident upon the housing. The reflected pattern of light can include an array of shapes such as dots whose orientation and location can provide indications of uniformity for the housing. The array of shapes are analyzed to determine certain geometric properties such as area for each shape in the array of shapes. The geometric properties can thereafter be compared to a predetermined geometric, threshold, or tolerance value, and each shape can be assigned a rank of uniformity. Once a rank of uniformity is defined for each shape, a compilation of uniformity values can be generated and used to find portions on the housing where the housing is not uniform or flat.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in the base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in the base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
An input device is disclosed. The input device includes a movable touch-sensitive track pad capable of detecting an object in close proximity thereto so as to generate a tracking control signal. The input device also includes a movement indicator capable of detecting the movements of the movable track pad so as to generate one or more other control signals (e.g., button signals). The control signals can be used to perform actions in an electronic device operatively coupled to the input device.
Abstract:
Apparatuses and methods for an electronic device to control the application of friction to a rotary input control with a shaft. In one example, the apparatus may include a spring bar member having a first surface and a second surface, the first surface positioned adjacent to the shaft; and a movable tension member positioned to engage the second surface of the spring bar; wherein as the tension member engages the spring bar, the spring bar engages the shaft and applies a frictional force to the shaft. In this manner, the apparatus can controllably apply a friction force of a desired amount to the rotary input control.
Abstract:
The three dimensional surface shape of one or more layers of a reflective object is determined by examining one or more captured images reflected from the reflective object. Curved surfaces reflect a distorted image altered by the surface shape. By analyzing one or more captured images of the distorted reflected images, the shape of the surface that caused the distortion is estimated. A captured distorted image is compared to a reference undistorted image having known geometric properties. A system to capture and process such images is assembled from components including an image capture assembly such as a digital camera to capture reflected images and a positioning assembly on which to orient the components with respect to each other. Multiple surface layers of the reflective object are separately estimated using polarizations, luminance levels, chroma values or combinations thereof contained in one or more captured images.