Abstract:
In one embodiment, a system includes power management control that controls a duty cycle of a processor to manage power. The duty cycle may be the amount of time that the processor is powered on as a percentage of the total time. By frequently powering up and powering down the processor during a period of time, the power consumption of the processor may be controlled while providing the perception that the processor is continuously available. For example, the processor may be a graphics processing unit (GPU), and the period of time over which the duty cycle is managed may be a frame to be displayed on the display screen viewed by a user of the system.
Abstract:
Techniques and structures relating to virtual graphics processing units (VGPUs) are disclosed. A VGPU may appear to software as an independent hardware GPU. However, two or more VGPUs can be implemented on the same GPU through the use of control structures and by duplicating some (but not all) hardware elements of the GPU. For example, additional registers and storage space may be added in a GPU supporting multiple VGPUs. Different execution priorities may be set for tasks and threads that correspond to the different supported VGPUs. Memory address space for the VGPUs may also be managed, including use of virtual address space for different VGPUs. Halting and resuming execution of different VGPUs allows for fine-grained execution control in various embodiments.
Abstract:
In one embodiment, a system includes power management control that controls a duty cycle of a processor to manage power. The duty cycle may be the amount of time that the processor is powered on as a percentage of the total time. By frequently powering up and powering down the processor during a period of time, the power consumption of the processor may be controlled while providing the perception that the processor is continuously available. For example, the processor may be a graphics processing unit (GPU), and the period of time over which the duty cycle is managed may be a frame to be displayed on the display screen viewed by a user of the system.
Abstract:
In one embodiment, a system includes power management control that controls a duty cycle of a processor to manage power. The duty cycle may be the amount of time that the processor is powered on as a percentage of the total time. By frequently powering up and powering down the processor during a period of time, the power consumption of the processor may be controlled while providing the perception that the processor is continuously available. For example, the processor may be a graphics processing unit (GPU), and the period of time over which the duty cycle is managed may be a frame to be displayed on the display screen viewed by a user of the system.
Abstract:
Techniques and structures relating to virtual graphics processing units (VGPUs) are disclosed. A VGPU may appear to software as an independent hardware GPU. However, two or more VGPUs can be implemented on the same GPU through the use of control structures and by duplicating some (but not all) hardware elements of the GPU. For example, additional registers and storage space may be added in a GPU supporting multiple VGPUs. Different execution priorities may be set for tasks and threads that correspond to the different supported VGPUs. Memory address space for the VGPUs may also be managed, including use of virtual address space for different VGPUs. Halting and resuming execution of different VGPUs allows for fine-grained execution control in various embodiments.
Abstract:
In one embodiment, a system includes power management control that controls a duty cycle of a processor to manage power. The duty cycle may be the amount of time that the processor is powered on as a percentage of the total time. By frequently powering up and powering down the processor during a period of time, the power consumption of the processor may be controlled while providing the perception that the processor is continuously available. For example, the processor may be a graphics processing unit (GPU), and the period of time over which the duty cycle is managed may be a frame to be displayed on the display screen viewed by a user of the system.