Abstract:
A method for simplifying the host-to-display subsystem communications and consolidating the non-volatile memory requirements into a PMIC (power management integrated circuit) is disclosed. Hardware and software resource reduction in both the client devices (located in the display subsystem) and the host System on a Chip (SOC) can be realized with a novel PMIC design. The novel PMIC design achieves the resource reduction by providing for the following features: (1) Single-point communication, (2) Single-point notification, (3) Client device status storage, (4) Client device initialization from PMIC non-volatile memory, and (5) Subsystem calibration retrieval from PMIC non-volatile memory.
Abstract:
An integrated circuit with two operating modes is described. During a first operating mode, a de-multiplexer selectively couples information received via a common set of pads to first control logic, which decodes the information based on a first serial-interface technique. Moreover, during a second operating mode, the de-multiplexer selectively couples a first portion of the information to the first control logic and a second portion of the information to second control logic, which decodes the second portion based on a second serial-interface technique. By facilitating time-domain de-multiplexing of two similar serial-interface techniques, the integrated circuit can overcome the constraints imposed by a low or limited pin count.
Abstract:
An integrated circuit with two operating modes is described. During a first operating mode, a de-multiplexer selectively couples information received via a common set of pads to first control logic, which decodes the information based on a first serial-interface technique. Moreover, during a second operating mode, the de-multiplexer selectively couples a first portion of the information to the first control logic and a second portion of the information to second control logic, which decodes the second portion based on a second serial-interface technique. By facilitating time-domain de-multiplexing of two similar serial-interface techniques, the integrated circuit can overcome the constraints imposed by a low or limited pin count.
Abstract:
A system, method, and device for increasing uniformity between displays incorporating components from different manufacturers. Incorporating components from different manufactures in different displays may cause the different displays to appear differently even under similar conditions. By modifying the operating parameters used to drive the display according to performance characteristics for various conditions, displays incorporating components from different manufacturers may be configured to produce a substantially similar picture under similar conditions. The various conditions may include stimulus information, such as temperature or touch activity.
Abstract:
A method for simplifying the host-to-display subsystem communications and consolidating the non-volatile memory requirements into a PMIC (power management integrated circuit) is disclosed. Hardware and software resource reduction in both the client devices (located in the display subsystem) and the host System on a Chip (SOC) can be realized with a novel PMIC design. The novel PMIC design achieves the resource reduction by providing for the following features: (1) Single-point communication, (2) Single-point notification, (3) Client device status storage, (4) Client device initialization from PMIC non-volatile memory, and (5) Subsystem calibration retrieval from PMIC non-volatile memory.
Abstract:
A system, method, and device for increasing uniformity between displays incorporating components from different manufacturers. Incorporating components from different manufactures in different displays may cause the different displays to appear differently even under similar conditions. By modifying the operating parameters used to drive the display according to performance characteristics for various conditions, displays incorporating components from different manufacturers may be configured to produce a substantially similar picture under similar conditions. The various conditions may include stimulus information, such as temperature or touch activity.