Abstract:
A transfer chamber configured to be used during semiconductor device manufacturing is described. Transfer chamber includes at least one first side of a first width configured to couple to one or more substrate transfer units (e.g., one or more load locks or one or more pass-through units), and at least a second set of sides of a second width that is different than the first width, the second set of sides configured to couple to one or more processing chambers. A total number of sides of the transfer chamber is at least seven. Transfers within the transfer chamber are serviceable by a single robot. Process tools and methods for processing substrates are described, as are numerous other aspects.
Abstract:
A substrate processing system includes a factory interface, a transfer chamber, and a robot. The transfer chamber includes four first facets adapted for attachment to one or more first processing chambers and three second facets, wherein each of the three second facets has a width that is narrower than that of each of the four first facets. The system includes a second processing chamber having a first interface attached to a first of the three second facets and a load lock attached to a second of the three second facets and to the factory interface. The system also includes a robot attached to a bottom of the transfer chamber, the robot adapted to transfer substrates to and from the one or more first processing chambers, the second processing chamber, and the load lock.
Abstract:
A transfer chamber configured to be used during semiconductor device manufacturing is described. Transfer chamber includes at least one first side of a first width configured to couple to one or more substrate transfer units (e.g., one or more load locks or one or more pass-through units), and at least a second set of sides of a second width that is different than the first width, the second set of sides configured to couple to one or more processing chambers. A total number of sides of the transfer chamber is at least seven. Transfers within the transfer chamber are serviceable by a single robot. Process tools and methods for processing substrates are described, as are numerous other aspects.
Abstract:
A transfer chamber configured to be used during semiconductor device manufacturing is described. Transfer chamber includes at least one first side of a first width configured to couple to one or more substrate transfer units (e.g., one or more load locks or one or more pass-through units), and at least a second set of sides of a second width that is different than the first width, the second set of sides configured to couple to one or more processing chambers. A total number of sides of the transfer chamber is at least seven. Transfers within the transfer chamber are serviceable by a single robot. Process tools and methods for processing substrates are described, as are numerous other aspects.
Abstract:
Methods, apparatus, and assemblies are provided for a substrate carrier adapter insert including an adapter frame including a support rail adapted to support one or more substrates in a substrate carrier, a frame extension coupled to, or integral with, the adapter frame, and a mapping feature formed on the frame extension and disposed to be detected by a sensor for determining whether an adapter insert is present or absent in a substrate carrier. Numerous additional features are disclosed.
Abstract:
Methods, apparatus, and assemblies are provided for an adapter insert including an adapter frame including a support rail adapted to support one or more substrates in a substrate carrier, a frame extension coupled to, or integral with, the adapter frame, and a mapping feature formed on the frame extension and disposed to be detected by a sensor for determining whether an adapter insert is present or absent in a substrate carrier. Numerous additional features are disclosed.
Abstract:
A gas flow system is provided, including a gas flow source, one or more gas inlets, one or more gas outlets, a gas flow region, a low pressure region, wherein the low pressure region is fluidly coupled to the one or more gas outlets, a high pressure region, and a gap. The one or more gas inlets are fluidly coupleable to the gas flow source. The gas flow region is fluidly coupled to the one or more gas inlets and the one or more gas outlets. The gap fluidly couples the gas flow region to the high pressure region. The high pressure region near the targets allows for process gas interactions with the target to sputter onto the substrate below. The low pressure region near the substrate prevents unwanted chemical interactions between the process gas and the substrate.
Abstract:
Methods, apparatus, and assemblies are provided for a substrate carrier adapter insert including an adapter frame including a support rail adapted to support one or more substrates in a substrate carrier, a frame extension coupled to, or integral with, the adapter frame, and a mapping feature formed on the frame extension and disposed to be detected by a sensor for determining whether an adapter insert is present or absent in a substrate carrier. Numerous additional features are disclosed.
Abstract:
A substrate carrier door assembly including relatively high sealing force that can be modulated. Substrate carrier door assembly includes a carrier door configured to seal to a carrier body, a first attraction member on the carrier body, and a second attraction member on the carrier door. Attraction members are selected from a group of a magnetic material and a permanent magnet. Substrate carrier door assembly includes a magnetic field generator energizable to reduce attraction force between the attraction members making the carrier door relatively easier to remove, yet providing enhanced sealing when not energized. Substrate carriers including the substrate carrier door assembly and methods of processing substrates are provided. A substrate carrier including a port configured to allow gas to be injected into, or removed from, a carrier chamber, and a magnetic port seal is also disclosed, as are numerous other aspects.
Abstract:
A substrate carrier door assembly including relatively high sealing force that can be modulated. Substrate carrier door assembly includes a carrier door configured to seal to a carrier body, a first attraction member on the carrier body, and a second attraction member on the carrier door. Attraction members are selected from a group of a magnetic material and a permanent magnet. Substrate carrier door assembly includes a magnetic field generator energizable to reduce attraction force between the attraction members making the carrier door relatively easier to remove, yet providing enhanced sealing when not energized. Substrate carriers including the substrate carrier door assembly and methods of processing substrates are provided. A substrate carrier including a port configured to allow gas to be injected into, or removed from, a carrier chamber, and a magnetic port seal is also disclosed, as are numerous other aspects.