Abstract:
Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
Abstract:
In some embodiments, methods and systems are provided for improved handling of lithography masks including loading a mask via a first load port from a first carrier; inverting the mask using a first contact pad; cleaning the mask; inverting the mask using a second contact pad; and unloading the mask via a second load port into a second carrier. Numerous other aspects are provided.
Abstract:
Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
Abstract:
A factory interface for an electronic device processing system includes a factory interface chamber, an inert gas supply conduit, an exhaust conduit and an inert gas recirculation system. The inert gas supply conduit supplies an inert gas into the factory interface chamber. The exhaust conduit exhausts the inert gas from the factory interface chamber. The inert gas recirculation system recirculates the inert gas exhausted from the factory interface chamber back into the factory interface chamber.
Abstract:
In some embodiments, methods and systems are provided for improved handling of lithography masks including loading a mask via a first load port from a first carrier; inverting the mask using a first contact pad; cleaning the mask; inverting the mask using a second contact pad; and unloading the mask via a second load port into a second carrier. Numerous other aspects are provided.
Abstract:
Transfer chamber gas purge apparatus are disclosed. The transfer chamber gas purge apparatus has a transfer chamber adapted to contain at least a portion of a transfer robot, the transfer chamber including side walls, a chamber lid, and a chamber floor, wherein the chamber lid has a plurality of distributed chamber inlets. The plurality of distributed chamber inlets may include diffusing elements. Laminar purge gas flow may be provided above the substrate. Systems and methods including a plurality of distributed chamber inlets are disclosed, as are numerous other aspects.
Abstract:
An electronic device processing system includes a factory interface (FI), substrate carrier(s), a humidity sensor, an oxygen sensor, and an environmental control system coupled to the FI. A processor of the environmental control system is to cause inert gas to be provided to an FI chamber and inert gas exhausted from the FI chamber to be circulated back into the FI chamber. The processor is also to identify conditions to be satisfied before opening a door of the substrate carriers. The processor is to control the humidity level based on detection by the humidity sensor or the oxygen level based on detection by the oxygen sensor. If the one or more conditions are satisfied, the processor is to open the carrier door to enable passing of substrates between the FI chamber and the substrate carriers.
Abstract:
Transfer chamber gas purge apparatus are disclosed. The transfer chamber gas purge apparatus has a transfer chamber adapted to contain at least a portion of a transfer robot, the transfer chamber including side walls, a chamber lid, and a chamber floor, wherein the chamber lid has a plurality of distributed chamber inlets. The plurality of distributed chamber inlets may include diffusing elements. Laminar purge gas flow may be provided above the substrate. Systems and methods including a plurality of distributed chamber inlets are disclosed, as are numerous other aspects.
Abstract:
Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
Abstract:
Methods, apparatus, and assemblies are provided for a substrate carrier adapter insert including an adapter frame including a support rail adapted to support one or more substrates in a substrate carrier, a frame extension coupled to, or integral with, the adapter frame, and a mapping feature formed on the frame extension and disposed to be detected by a sensor for determining whether an adapter insert is present or absent in a substrate carrier. Numerous additional features are disclosed.