Abstract:
A method and a charged particle beam system that includes charged particle beam optics and a movable stage; wherein the movable stage is configured to introduce a movement between the object and charged particle beam optics; wherein the movement is of a constant velocity and along a first direction; wherein the charged particle beam optics is configured to scan, by the charged particle beam, multiple areas of the object so that each point of the multiple areas is scanned multiple times; wherein the multiple areas partially overlap; wherein the scanning is executed by the charged particle beam optics; wherein the scanning comprises performing counter-movement deflections of the charged particle beam for at least partially compensating for the movement; and wherein each area of the multiple areas is scanned by following an area scan scheme that defines multiple scan lines that differ from each other.
Abstract:
A method for detecting crystal defects includes scanning a first FOV on a first sample using a charged particle beam with a plurality of different tilt angles. BSE emitted from the first sample are detected and a first image of the first FOV is created. A first area within the first image is identified where signals from the BSE are lower than other areas of the first image. A second FOV on a second sample is scanned using approximately the same tilt angles or deflections as those used to scan the first area. The BSE emitted from the second sample are detected and a second image of the second FOV is created. Crystal defects within the second sample are identified by identifying areas within the second image where signals from the BSE are different than other areas of the second image.
Abstract:
A method for detecting crystal defects includes scanning a first FOV on a first sample using a charged particle beam with a plurality of different tilt angles. BSE emitted from the first sample are detected and a first image of the first FOV is created. A first area within the first image is identified where signals from the BSE are lower than other areas of the first image. A second FOV on a second sample is scanned using approximately the same tilt angles or deflections as those used to scan the first area. The BSE emitted from the second sample are detected and a second image of the second FOV is created. Crystal defects within the second sample are identified by identifying areas within the second image where signals from the BSE are different than other areas of the second image.
Abstract:
A method and a charged particle beam system that includes charged particle beam optics and a movable stage; wherein the movable stage is configured to introduce a movement between the object and charged particle beam optics; wherein the movement is of a constant velocity and along a first direction; wherein the charged particle beam optics is configured to scan, by the charged particle beam, multiple areas of the object so that each point of the multiple areas is scanned multiple times; wherein the multiple areas partially overlap; wherein the scanning is executed by the charged particle beam optics; wherein the scanning comprises performing counter-movement deflections of the charged particle beam for at least partially compensating for the movement; and wherein each area of the multiple areas is scanned by following an area scan scheme that defines multiple scan lines that differ from each other.