Abstract:
A method of evaluating a region of a sample that includes alternating layers of different material. The method includes milling, with a focused ion beam, a portion of the sample that includes the alternating layers of different material; reducing the milling area; and repeating the milling and reducing steps multiple times during the delayering process until the process is complete.
Abstract:
A method for evaluating a specimen includes positioning a detector in an inserted position in which a first distance between a tip of the detector and a plane extending along a surface of the specimen is less than a distance between the plane and a tip of charged particle beam optics. While maintaining the detector at the inserted position, the surface of the specimen is scanned by a primary beam that exits from the tip of the charged particle beam optics. The detector detects x-ray photons and/or charged particles emitted or reflected from the specimen as a result of scanning the specimen with the primary beam. After completion of the scanning, the detector is positioned at a retracted position in which a second distance between the tip of the detector and the plane exceeds a distance between the tip of the charged particle beam optics and the plane.
Abstract:
A system, method and a non-transitory compute readable medium for evaluating a high aspect ratio (HAR) hole having a nanometric scale width and formed in a substrate, including obtaining, during an illumination period, multiple measurement results by an electrostatic measurement device that comprises a probe tip that is placed in proximity to the HAR hole; wherein multiple locations within the HAR hole are illuminated with a beam of charged particles during the illumination period; and processing the multiple measurement results to determine a state of the HAR hole.
Abstract:
A method for evaluating a specimen, the method can include positioning an energy dispersive X-ray (EDX) detector at a first position; scanning a flat surface of the specimen by a charged particle beam that exits from a charged particle beam optics tip and propagates through an aperture of an EDX detector tip; detecting, by the EDX detector, x-ray photons emitted from the flat surface as a result of the scanning of the flat surface with the charged particle beam; after a completion of the scanning of the flat surface, positioning the EDX detector at a second position in which a distance between the EDX detector tip and a plane of the flat surface exceeds a distance between the plane of the flat surface and the charged particle beam optics tip; and wherein a projection of the EDX detector on the plane of the flat surface virtually falls on the flat surface when the EDX detector is positioned at the first position and when the EDX detector is positioned at the second position.
Abstract:
A method for evaluating a specimen, the method can include positioning an energy dispersive X-ray (EDX) detector at a first position; scanning a flat surface of the specimen by a charged particle beam that exits from a charged particle beam optics tip and propagates through an aperture of an EDX detector tip; detecting, by the EDX detector, x-ray photons emitted from the flat surface as a result of the scanning of the flat surface with the charged particle beam; after a completion of the scanning of the flat surface, positioning the EDX detector at a second position in which a distance between the EDX detector tip and a plane of the flat surface exceeds a distance between the plane of the flat surface and the charged particle beam optics tip; and wherein a projection of the EDX detector on the plane of the flat surface virtually falls on the flat surface when the EDX detector is positioned at the first position and when the EDX detector is positioned at the second position.
Abstract:
A system for scanning a plurality of regions of interest of a substrate using one or more charged particle beams, the system comprises: an irradiation module having charged particle optics; a stage for introducing a relative movement between the substrate and the charged particle optics; an imaging module for collecting electrons emanating from the substrate in response to a scanning of the regions of interest by the one or more charged particle beams; and wherein the charged particle optics is arranged to perform countermovements of the charged particle beam during the scanning of the regions of interest thereby countering relative movements introduced between the substrate and the charged particle optics during the scanning of the regions of interest.
Abstract:
A system and a method for evaluating a conductor, the method may include: illuminating a first area of a conductor by a first electron beam thereby charging the first area; illuminating by a second electron beam a second area of the conductor; and wherein an aggregate size of the first and second areas is a fraction of an overall size of the conductor; detecting, by a detector, detected emitted electrons that were emitted substantially from the second area and generating detection signals indicative of the detected emitted electrons; and processing, by a processor, the detection signals to provide information about a conductivity of the conductor.
Abstract:
A system for scanning a plurality of regions of interest of a substrate using one or more charged particle beams, the system may include: an irradiation module having charged particle optics; a stage for introducing a relative movement between the substrate and the charged particle optics; an imaging module for collecting electrons emanating from the substrate in response to a scanning of the regions of interest by the one or more charged particle beams; and wherein the charged particle optics is arranged to perform countermovements of the charged particle beam during the scanning of the regions of interest thereby countering relative movements introduced between the substrate and the charged particle optics during the scanning of the regions of interest.
Abstract:
A system and a method for evaluating a lithography mask, the system may include: (a) electron optics for directing primary electrons towards a pellicle that is positioned between the electron optics and the lithography mask; wherein the primary electrons exhibit an energy level that allows the primary electrons to pass through the pellicle and to impinge on the lithographic mask; (b) at least one detector for detecting detected emitted electrons and for generating detection signals; wherein detected emitted electrons are generated as a result of an impingement of the primary electrons on the lithographic mask; and (c) a processor for processing the detection signals to provide information about the lithography mask.
Abstract:
An evaluation system that includes a miniature module that comprises a miniature objective lens and a miniature supporting module; wherein the miniature supporting module is arranged, when placed on a sample, to position the miniature objective lens at working distance from the sample; wherein the miniature objective lens is arranged to gather radiation from an area of the sample when positioned at the working distance from the sample; a sensor arranged to detect radiation that is gathered by the miniature objective lens to provide detection signals indicative of the area of the sample.