Abstract:
A monolithic graphite heater for heating a thermionic electron cathode includes first and second electrically conductive arms, each one of the first and second electrically conductive arms having an electrode mount at a proximal end, a thermal apex at a distal end, and a transitional region between the electrode mount and the thermal apex; a cathode mount electrically and mechanically coupling each thermal apex to form a maximum Joule-heating region at or adjacent the cathode mount and decreasing Joule heating along each transitional region; and a press-fit aperture formed in the cathode mount, the press-fit aperture sized to receive at least a portion of the thermionic electron cathode for facilitating thermionic emission produced therefrom in response to operative heat power generation provided by the maximum Joule-heating region.
Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
A monolithic graphite heater for heating a thermionic electron cathode includes first and second electrically conductive arms, each one of the first and second electrically conductive arms having an electrode mount at a proximal end, a thermal apex at a distal end, and a transitional region between the electrode mount and the thermal apex; a cathode mount electrically and mechanically coupling each thermal apex to form a maximum Joule-heating region at or adjacent the cathode mount and decreasing Joule-heating along each transitional region; and a press-fit aperture formed in the cathode mount, the press-fit aperture sized to receive at least a portion of the thermionic electron cathode for facilitating thermionic emission produced therefrom in response to operative heat power generation provided by the maximum Joule-heating region.
Abstract:
An electron source emitter is made from transition metal carbide materials, including hafnium carbide (HfC), zirconium carbide (ZrC), titanium carbide (TiC), vanadium carbide (VC), niobium carbide (NbC), and tantalum carbide (TaC), which are of high refractory nature. Preferential evaporating and subsequent development of different crystallographic planes of the transition metal carbide emitter having initially at its apex a small radius (50 nm-300 nm) develop over time an on-axis, sharp end-form or tip that is uniformly accentuated circumferentially to an extreme angular form and persists over time. An emitter manufactured to the (110) crystallographic plane and operating at high electron beam current and high temperature for about 20 hours to 40 hours results in the (110) plane, while initially not a high emission crystallographic orientation, developing into a very high field emission orientation because of the geometrical change. This geometrical change allows for a very high electric field and hence high on-axis electron emission.