摘要:
In general, the invention is directed to techniques for breaking out mobile data traffic from a mobile service provider network to a packet data network. For example, as described herein, a breakout gateway device (BGW) receives a first service request and data traffic for a data session associated with the requested service from a mobile device in a radio access network, wherein the first service request is addressed to a serving node of a mobile core network of the mobile service provider network, and wherein the data traffic is destined for the PDN. A control packet analysis module forwards the first service request from the breakout gateway device to the serving node. A breakout module of the BGW bypasses the serving node by sending the data traffic from the breakout gateway device to the PDN on a data path from the radio access network to the PDN.
摘要:
In general, the invention is directed to techniques for breaking out mobile data traffic from a mobile service provider network to a packet data network. For example, as described herein, a breakout gateway device (BGW) receives a first service request and data traffic for a data session associated with the requested service from a mobile device in a radio access network, wherein the first service request is addressed to a serving node of a mobile core network of the mobile service provider network, and wherein the data traffic is destined for the PDN. A control packet analysis module forwards the first service request from the breakout gateway device to the serving node. A breakout module of the BGW bypasses the serving node by sending the data traffic from the breakout gateway device to the PDN on a data path from the radio access network to the PDN.
摘要:
In general, techniques are described for decentralizing handling of subscriber sessions within a gateway device of a mobile network. A mobile network gateway comprises a data plane having a plurality of forwarding components to receive session requests from a mobile service provider network in which the mobile network gateway resides. A control plane comprises a plurality of distributed subscriber management service units coupled by a switch fabric to the data plane. Each of the subscriber management service units serve as anchors for communication sessions for mobile devices that are accessing one or more packet data network by the mobile service provider network. A request delegation module within each of the forwarding components directs the session requests to the subscriber management service units unit to provide management services for the sessions requested by the mobile device.
摘要:
In general, techniques are described for decentralizing handling of subscriber sessions within a gateway device of a mobile network. A mobile network gateway comprises a data plane having a plurality of forwarding components to receive session requests from a mobile service provider network in which the mobile network gateway resides. A control plane comprises a plurality of distributed subscriber management service units coupled by a switch fabric to the data plane. Each of the subscriber management service units serve as anchors for communication sessions for mobile devices that are accessing one or more packet data network by the mobile service provider network. A request delegation module within each of the forwarding components directs the session requests to the subscriber management service units unit to provide management services for the sessions requested by the mobile device.
摘要:
A device includes one or more network interfaces to receive layer two (L2) communications from an L2 network having a plurality of L2 devices; and a control unit to forward the L2 communications in accordance with forwarding information defining a plurality of flooding next hops. Each of the flooding next hops stored by the control unit specifies a set of the L2 devices within the L2 network to which to forward L2 communications in accordance with a plurality of trees, where each of the trees has a different one of the plurality of L2 devices as a root node. The control unit of the device computes a corresponding one of flooding next hops for each of the trees using only a subset of the trees without computing all of the trees having all of the different L2 network devices as root nodes.
摘要:
In general, techniques are described for performing scalable layer two (L2) learning in computer networks. A network device that includes interfaces and a control unit may implement these techniques. The control unit stores a L2 learning table having entries that are each associated with a service tag identifying a service virtual local area network. In response to receiving a packet that includes a service tag, the interfaces access the L2 learning table using the service tag to determine whether any of the entries of the L2 learning table are associated with the service tag. When none of the entries are associated with the service tag, the L2 learning module updates the L2 learning table to create a new entry defining an association between the one of the interfaces that received the packet and the service tag.
摘要:
Methods, apparatus, and products for routing frames in a shortest path computer network for a multi-homed legacy bridge, wherein the network includes a plurality of bridges. At least two of the plurality of bridges operate as edge bridges through which the frames ingress and egress the network. A first edge bridge identifies a legacy bridge nickname for a legacy bridge connected to the network through the first edge bridge and a second edge bridge using active-active link aggregation. The first bridge receives a frame from the legacy bridge and determines, in dependence upon the frame's destination node address, an egress bridge nickname for a third bridge through which a destination node connects to the network. The first bridge then adds the legacy bridge nickname and the egress bridge nickname to the frame and routes the frame to the third bridge in dependence upon the egress bridge nickname.
摘要:
In general, techniques are described for dynamically redirecting session requests received with a mobile network gateway to another gateway of the mobile network. Heterogeneous static and dynamic capabilities among gateways of the mobile network lead some gateways unable to service a particular session requested by a wireless device attached to the mobile network. A set of policies configured within the gateways by a mobile network operator and applied by the gateway enable the gateway to identify and offload session requests to another gateway of the mobile network that has the present capability to service the session. The policies may define conditions and actions to provide flexible routing of the user session to an appropriate gateway.
摘要:
Methods, apparatus, and products for routing frames in a shortest path computer network for a multi-homed legacy bridge, wherein the network includes a plurality of bridges. At least two of the plurality of bridges operate as edge bridges through which the frames ingress and egress the network. A first edge bridge identifies a legacy bridge nickname for a legacy bridge connected to the network through the first edge bridge and a second edge bridge using active-active link aggregation. The first bridge receives a frame from the legacy bridge and determines, in dependence upon the frame's destination node address, an egress bridge nickname for a third bridge through which a destination node connects to the network. The first bridge then adds the legacy bridge nickname and the egress bridge nickname to the frame and routes the frame to the third bridge in dependence upon the egress bridge nickname.
摘要:
Methods, apparatus, and products are disclosed for forwarding frames in a computer network using shortest path bridging (‘SPB’). The network includes multiple bridges, and each edge bridge is assigned a unique service virtual local area network (‘VLAN’) identifier. One of the bridges receives a frame for transmission to a destination node. The received frame includes a service VLAN identifier for the ingress bridge through which the frame entered the network and a customer VLAN identifier. The one bridge identifies an SPB forwarding tree in dependence upon the service VLAN identifier. The SPB forwarding tree specifies a shortest route in the network from the ingress bridge through the one bridge to the other bridges in the network. The one bridge then forwards the received frame to the egress bridge without MAC-in-MAC encapsulation in dependence upon the SPB forwarding tree and the customer VLAN identifier.