摘要:
Methods, apparatus, and products are disclosed for routing frames in a TRILL network using service VLAN identifiers by: receiving a frame from an ingress bridge node for transmission through the TRILL network to a destination node that connects to the TRILL network through an egress node, the received frame including a customer VLAN identifier, a service VLAN identifier uniquely assigned to the ingress bridge node, and a destination node address for the destination node, the received frame not having mac-in-mac encapsulation; adding, in dependence upon the service VLAN identifier and the destination node address, a TRILL header conforming to the TRILL protocol, the TRILL header including an ingress bridge nickname and an egress bridge nickname; and routing, to the egress bridge node through which the destination node connects to the network, the frame in dependence upon the ingress bridge nickname and the egress bridge nickname.
摘要:
Methods, apparatus, and products are disclosed for routing frames in a TRILL network using service VLAN identifiers by: receiving a frame from an ingress bridge node for transmission through the TRILL network to a destination node that connects to the TRILL network through an egress node, the received frame including a customer VLAN identifier, a service VLAN identifier uniquely assigned to the ingress bridge node, and a destination node address for the destination node, the received frame not having mac-in-mac encapsulation; adding, in dependence upon the service VLAN identifier and the destination node address, a TRILL header conforming to the TRILL protocol, the TRILL header including an ingress bridge nickname and an egress bridge nickname; and routing, to the egress bridge node through which the destination node connects to the network, the frame in dependence upon the ingress bridge nickname and the egress bridge nickname.
摘要:
Methods, apparatus, and products for routing frames in a shortest path computer network for a multi-homed legacy bridge, wherein the network includes a plurality of bridges. At least two of the plurality of bridges operate as edge bridges through which the frames ingress and egress the network. A first edge bridge identifies a legacy bridge nickname for a legacy bridge connected to the network through the first edge bridge and a second edge bridge using active-active link aggregation. The first bridge receives a frame from the legacy bridge and determines, in dependence upon the frame's destination node address, an egress bridge nickname for a third bridge through which a destination node connects to the network. The first bridge then adds the legacy bridge nickname and the egress bridge nickname to the frame and routes the frame to the third bridge in dependence upon the egress bridge nickname.
摘要:
Methods, apparatus, and products for routing frames in a shortest path computer network for a multi-homed legacy bridge, wherein the network includes a plurality of bridges. At least two of the plurality of bridges operate as edge bridges through which the frames ingress and egress the network. A first edge bridge identifies a legacy bridge nickname for a legacy bridge connected to the network through the first edge bridge and a second edge bridge using active-active link aggregation. The first bridge receives a frame from the legacy bridge and determines, in dependence upon the frame's destination node address, an egress bridge nickname for a third bridge through which a destination node connects to the network. The first bridge then adds the legacy bridge nickname and the egress bridge nickname to the frame and routes the frame to the third bridge in dependence upon the egress bridge nickname.
摘要:
Methods, apparatus, and products for routing frames in a network using bridge identifiers, wherein the network includes a plurality of bridge nodes. At least one of the bridge nodes operates as an ingress bridge node through which frames are received into the network. At least one of the bridge nodes operates as an egress bridge node through which frames are transmitted out of the network. One of the bridge nodes receives, from the ingress bridge node, a frame for transmission to a destination node. The destination node connects to the network through the egress bridge node. The frame includes an ingress bridge identifier and an egress bridge identifier. The bridge that received the frame then routes the frame to the egress bridge node through which the destination node connects to the network in dependence upon the ingress bridge identifier and the egress bridge identifier included in the frame.
摘要:
Methods, apparatus, and products for routing frames in a network using bridge identifiers, wherein the network includes a plurality of bridge nodes. At least one of the bridge nodes operates as an ingress bridge node through which frames are received into the network. At least one of the bridge nodes operates as an egress bridge node through which frames are transmitted out of the network. One of the bridge nodes receives, from the ingress bridge node, a frame for transmission to a destination node. The destination node connects to the network through the egress bridge node. The frame includes an ingress bridge identifier and an egress bridge identifier. The bridge that received the frame then routes the frame to the egress bridge node through which the destination node connects to the network in dependence upon the ingress bridge identifier and the egress bridge identifier included in the frame.
摘要:
A derived state value is calculated based on a plurality of component state values. As any of the plurality of component state values changes, the derived state value is recalculated. When sending information about a MAC address or other data between two components, the derived state value is included in the information sent. An object receiving a MAC address or other data from another object checks the validity of the received derived state value to determine whether to accept the new data and flush old data, to accept the new data, or to ignore the new data.
摘要:
In general, the invention is directed to techniques for breaking out mobile data traffic from a mobile service provider network to a packet data network. For example, as described herein, a breakout gateway device (BGW) receives a first service request and data traffic for a data session associated with the requested service from a mobile device in a radio access network, wherein the first service request is addressed to a serving node of a mobile core network of the mobile service provider network, and wherein the data traffic is destined for the PDN. A control packet analysis module forwards the first service request from the breakout gateway device to the serving node. A breakout module of the BGW bypasses the serving node by sending the data traffic from the breakout gateway device to the PDN on a data path from the radio access network to the PDN.
摘要:
In general, the invention is directed to techniques for breaking out mobile data traffic from a mobile service provider network to a packet data network. For example, as described herein, a breakout gateway device (BGW) receives a first service request and data traffic for a data session associated with the requested service from a mobile device in a radio access network, wherein the first service request is addressed to a serving node of a mobile core network of the mobile service provider network, and wherein the data traffic is destined for the PDN. A control packet analysis module forwards the first service request from the breakout gateway device to the serving node. A breakout module of the BGW bypasses the serving node by sending the data traffic from the breakout gateway device to the PDN on a data path from the radio access network to the PDN.
摘要:
In general, techniques are described for simultaneously testing connectivity to same or different remote maintenance endpoints of the same maintenance association. Specifically, a network device may include a control unit that simultaneously executes both a first and a second maintenance session. The control unit maintains first and second session identifiers that uniquely identifies the first and second maintenance sessions. The control unit receives via the first maintenance session input that specifies parameters for a maintenance message and generates the maintenance message in accordance with the parameters such that the maintenance message includes the first session identifier. The network device also includes an interface card that forwards the maintenance message to another network device in order to determine connectivity between these two network devices. By generating the maintenance message to include the first session identifier, the control unit may upon receiving a response to the maintenance message resolve to which of the maintenance session the response corresponds.