摘要:
A slit pattern, which is an orientation control element extending in an oblique direction relative to an edge of a pixel electrode on a surface of a TFT substrate, is formed in the pixel electrode to extend in a substantially parallel direction to an extending direction of a bank-shaped pattern. Furthermore, as an orientation control element, fine slit patterns (concave portions in the pixel electrode) are formed locally in a part near the edge of the pixel electrode except in the pixel electrode to extend in an oblique direction relative to an extending direction of the edge.
摘要:
A slit pattern, which is an orientation control element extending in an oblique direction relative to an edge of a pixel electrode on a surface of a TFT substrate, is formed in the pixel electrode to extend in a substantially parallel direction to an extending direction of a bank-shaped pattern. Furthermore, as an orientation control element, fine slit patterns (concave portions in the pixel electrode) are formed locally in a part near the edge of the pixel electrode except in the pixel electrode to extend in an oblique direction relative to an extending direction of the edge.
摘要:
A slit pattern, which is an orientation control element extending in an oblique direction relative to an edge of a pixel electrode on a surface of a TFT substrate, is formed in the pixel electrode to extend in a substantially parallel direction to an extending direction of a bank-shaped pattern. Furthermore, as an orientation control element, fine slit patterns (concave portions in the pixel electrode) are formed locally in a part near the edge of the pixel electrode except in the pixel electrode to extend in an oblique direction relative to an extending direction of the edge.
摘要:
A slit pattern, which is an orientation control element extending in an oblique direction relative to an edge of a pixel electrode on a surface of a TFT substrate, is formed in the pixel electrode to extend in a substantially parallel direction to an extending direction of a bank-shaped pattern. Furthermore, as an orientation control element, fine slit patterns (concave portions in the pixel electrode) are formed locally in a part near the edge of the pixel electrode except in the pixel electrode to extend in an oblique direction relative to an extending direction of the edge.
摘要:
A liquid crystal display device including a common electrode on a first substrate, a pixel electrode on a second substrate, and a liquid crystal layer between the first and second substrates. The device also include first and second alignment control structures formed, respectively, on the first and second substrates, for regulating azimuths of orientations of the liquid crystal when a voltage is applied thereto. The first and second alignment control structures each include a first line portion (extending in a first direction) and a second line portion (extending in a second direction, which is different from the first direction). The pixel electrode includes an edge extending in a direction different from both the first and second directions.
摘要:
A vertically alignment mode liquid crystal display device having an improved viewing angle characteristic is disclosed. The disclosed liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage being applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.
摘要:
A vertically alignment mode liquid crystal display device having an improved viewing angle characteristic is disclosed. The disclosed liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage being applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.
摘要:
A vertical alignment mode liquid crystal display device having an improved viewing angle characteristic is provided. The liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage is applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.
摘要:
A vertical alignment mode liquid crystal display device having an improved viewing angle characteristic is provided. The liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage is applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.
摘要:
A vertically alignment mode liquid crystal display device having an improved viewing angle characteristic is disclosed. The disclosed liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage being applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.