摘要:
Methods and devices are provided for determining the status of a networked device, e.g., a networked RFID device. In some embodiments of the invention, a customized packet is used to transmit a “heartbeat” from each of a plurality of networked devices to a server. Some such embodiments use a customized syslog packet for the heartbeats. The heartbeat includes identification information regarding the device, e.g., the unique electronic product code (“EPC”) of the device. The identification information may include other identification and/or authentication information, such as a shared secret and time data, which may be hashed with the identification information. The heartbeat may include information indicating the health, accuracy and/or reliability of the device and/or of the network that includes the device.
摘要:
According to some implementations of the present invention, RFID devices and middleware servers are automatically provisioned with a network address and with instructions for sending a request for a middleware server to a middleware server assigner. In some implementations, the middleware server assigner is a load balancer. In some implementations, a middleware server is associated with a plurality of RFID devices by associating a middleware server network address or names with the network addresses of the RFID devices. Preferred methods also provide for redundancy of middleware servers and dynamic re-assignment of RFID devices from an unavailable middleware server to an available middleware server.
摘要:
Methods and devices are provided for identifying, locating and provisioning individual RFID devices in a network with “personalities” that are appropriate for the roles of the RFID devices. According to some implementations of the invention, a combination of EPC code information and existing networking standards form the basis of identifying and provisioning methods. For example, MAC address information and EPC information can be combined to identify a particular device and its location in a network. For implementations using the Dynamic Host Configuration Protocol (“DHCP”), DHCP Options may be used to pass provisioning information. Some implementations employ Domain Name Service (“DNS”) and dynamic DNS (“DDNS”) to allow easy identification of RFID devices.
摘要:
Methods and devices are provided for identifying, locating and provisioning individual RFID devices in a network with “personalities” that are appropriate for the roles of the RFID devices. According to some implementations of the invention, a combination of EPC code information and existing networking standards form the basis of identifying and provisioning methods. For example, MAC address information and EPC information can be combined to identify a particular device and its location in a network. For implementations using the Dynamic Host Configuration Protocol (“DHCP”), DHCP Options may be used to pass provisioning information. Some implementations employ Domain Name Service (“DNS”) and dynamic DNS (“DDNS”) to allow easy identification of RFID devices.
摘要:
Methods and devices are provided for identifying and provisioning individual RFID devices in a network. According to some implementations of the invention, a combination of EPC code information and existing networking standards form the basis of identifying and provisioning methods. For example, MAC address information and EPC information can be combined to identify a particular device and its location in a network. For implementations using the Dynamic Host Configuration Protocol (“DHCP”), DHCP Options may be used to pass provisioning information. Some implementations employ Domain Name Service (“DNS”) and dynamic DNS (“DDNS”) to allow easy identification of RFID devices.
摘要:
Methods and devices are provided for identifying, locating and provisioning individual RFID devices in a network. According to some implementations of the invention, a combination of EPC code information and existing networking standards form the basis of identifying and provisioning methods. For example, MAC address information and EPC information can be combined to identify a particular device and its location in a network. For implementations using the Dynamic Host Configuration Protocol (“DHCP”), DHCP Options may be used to pass provisioning information. Some implementations employ Domain Name Service (“DNS”) and dynamic DNS (“DDNS”) to allow easy identification of RFID devices.
摘要:
According to some implementations of the present invention, RFID devices and middleware servers are automatically provisioned with a network address and with instructions for sending a request for a middleware server to a middleware server assigner. In some implementations, the middleware server assigner is a load balancer. In some implementations, a middleware server is associated with a plurality of RFID devices by associating a middleware server network address or names with the network addresses of the RFID devices. Preferred methods also provide for redundancy of middleware servers and dynamic reassignment of RFID devices from an unavailable middleware server to an available middleware server.
摘要:
In one embodiment, an occurrence of a triggering event is detected and it is determined that a virtual disk will be assembled in response to the triggering event. A time is determined at which the virtual disk will be assembled. When it is ascertained that the assembly time occurs, the virtual disk is assembled. It may also be determined whether a connection request is received for the virtual disk during a predetermined time.
摘要:
Methods and devices are provided for determining the status of a networked device. Messages from such devices may include information indicating the health, accuracy and/or reliability of a device and/or of the network that includes the device. Multiple message formats may be supported, e.g., heartbeat only, partial statistics, full statistics, etc. Transmission of such messages may be triggered by the occurrence of various conditions, such as the passage of a predetermined time interval, a predetermined change in one or more criteria, etc. In some implementations, a time-based message throttle establishes a minimum time interval between messages. Messages may be created in a format that is compatible with SNMP. Messages may be transmitted in more than one packet, if necessary. Messages may be sent to one or more devices, e.g., to one or more servers, according to various criteria.
摘要:
Some implementations of the invention involve forming “logical” or “virtual” devices by aggregating a plurality of physical devices. The physical devices may be, for example, controllers, RFID readers and/or storage devices. Some logical devices comprise components of physical devices, such as individual antennas from a plurality of RFID readers. The physical devices may be located near one another or may be distributed over a wide geographical area. Logical device definitions can also be concatenated to include devices having two or more levels of logical device definitions. A single logical device grouping may include physical devices at differing levels of a network hierarchy.