Abstract:
In an embodiment, a method comprises: obtaining a virtual bus address; translating the virtual bus address to a physical address of a portion of NVM storing first data; determining that the first portion of NVM has been allocated previously; reading the first data from the first portion of NVM; determining whether writing second data to the first portion of the NVM would change one or more bits in the first data; responsive to the determining that a write operation only changes data bits in the first data from 1 to 0, writing the second data over the first data stored in the first portion of NVM; and responsive to the determining that one or more bits in the first data would be flipped from 0 to 1, reallocating the first portion of NVM to a second portion of NVM, copying the first data from the first portion of NVM to the second portion of NVM with the first data modified by the second data.
Abstract:
A device comprises a central processing unit (CPU), a display controller configured for controlling a digital display and a memory configured for storing data corresponding to the digital display. The device includes a direct memory access (DMA) controller configured for autonomously transferring the data from the memory directly to the display controller without CPU intervention.
Abstract:
In an embodiment, a method comprises: obtaining a virtual bus address; translating the virtual bus address to a physical address of a portion of NVM storing first data; determining that the first portion of NVM has been allocated previously; reading the first data from the first portion of NVM; determining whether writing second data to the first portion of the NVM would change one or more bits in the first data; responsive to the determining that a write operation only changes data bits in the first data from 1 to 0, writing the second data over the first data stored in the first portion of NVM; and responsive to the determining that one or more bits in the first data would be flipped from 0 to 1, reallocating the first portion of NVM to a second portion of NVM, copying the first data from the first portion of NVM to the second portion of NVM with the first data modified by the second data.
Abstract:
Systems and techniques for processor reset hold control are described. A described system includes a controller to detect a hold request based on an external reset signal and an external debug signal, and generate a hold signal based on a detection of the hold request, where the hold signal continues after the external reset signal has been discontinued; a system component that is responsive to the external reset signal; a processor that is responsive to the hold signal, where the hold signal causes the processor to enter a reset state and to maintain the reset state after the external reset signal has been discontinued; and a system manager configured to permit external access to the system component while the processor is in the reset state. The controller can be configured to discontinue the hold signal in response to a clear request.