摘要:
An optical scanner includes a light source, an optical splitter which splits light from the light source into a plurality of light beams, an input optical element on which the light beams split by the optical splitter are incident, a driver which generates a voltage signal, an optical deflector which comprises at least two deflector portions formed close to each other on a same substrate and individually supplied with an electric action of the driver so as to capture and deflect the incident light beams using the electric action, and an output optical element which emits the deflected light beams to an image plane, wherein the optical scanner is configured to scan the image plane with the light beams by adjusting the voltage signal of the driver.
摘要:
An optical scanner includes a light source, an optical splitter which splits light from the light source into a plurality of light beams, an input optical element on which the light beams split by the optical splitter are incident, a driver which generates a voltage signal, an optical deflector which comprises at least two deflector portions formed close to each other on a same substrate and individually supplied with an electric action of the driver so as to capture and deflect the incident light beams using the electric action, and an output optical element which emits the deflected light beams to an image plane, wherein the optical scanner is configured to scan the image plane with the light beams by adjusting the voltage signal of the driver.
摘要:
A multibeam deflector includes a plurality of optical deflection devices formed on a single substrate and an output optical system. Each of the optical deflection devices includes a slab optical waveguide formed by a material having an electro-optic effect. The output optical system is configured to separate beams output from the optical deflection devices from each other.
摘要:
A multibeam deflector includes a plurality of optical deflection devices formed on a single substrate and an output optical system. Each of the optical deflection devices includes a slab optical waveguide formed by a material having an electro-optic effect. The output optical system is configured to separate beams output from the optical deflection devices from each other.
摘要:
An electro-optical element includes a core layer made of an electro-optical material, a clad structure disposed on each of opposite sides of the core layer and configured to form an optical waveguide together with the core layer, and a pair of electrode layers, one of which being disposed on one side of the clad structure and another being disposed on another side of the clad structure. The clad structure includes a first clad layer and a second layer. The second clad layer has a dielectric permittivity larger than that of the first clad layer, and the second clad layer has a thickness thicker than that of the first clad layer.
摘要:
An electro-optical element includes a core layer made of an electro-optical material, a clad structure disposed on each of opposite sides of the core layer and configured to form an optical waveguide together with the core layer, and a pair of electrode layers, one of which being disposed on one side of the clad structure and another being disposed on another side of the clad structure. The clad structure includes a first clad layer and a second layer. The second clad layer has a dielectric permittivity larger than that of the first clad layer, and the second clad layer has a thickness thicker than that of the first clad layer.
摘要:
An optical waveguide electro-optic device including: a support substrate; an optical waveguide which has a core layer formed of a ferroelectric material, and is formed on an upper side of the support substrate; a lower electrode layer formed on a lower side of the core layer and which is adhered to the support substrate through an adhesion layer; an upper electrode layer formed on an upper side of the core layer; and an external electrode part, wherein the optical waveguide has an incidence plane from where light enters and an outgoing plane from where the light exits, the core layer has a polarization inversion region and a polarization non-inversion region, the upper electrode layer has a plane in such a shape that a width of the plane expands from a side of the incidence plane toward a side of the outgoing plane, to cover the polarization inversion region of the core layer, and the lower electrode layer is connected electrically to the external electrode part on the side of the incidence plane.
摘要:
An optical waveguide electro-optic device including: a support substrate; an optical waveguide which has a core layer formed of a ferroelectric material, and is formed on an upper side of the support substrate; a lower electrode layer formed on a lower side of the core layer and which is adhered to the support substrate through an adhesion layer; an upper electrode layer formed on an upper side of the core layer; and an external electrode part, wherein the optical waveguide has an incidence plane from where light enters and an outgoing plane from where the light exits, the core layer has a polarization inversion region and a polarization non-inversion region, the upper electrode layer has a plane in such a shape that a width of the plane expands from a side of the incidence plane toward a side of the outgoing plane, to cover the polarization inversion region of the core layer, and the lower electrode layer is connected electrically to the external electrode part on the side of the incidence plane.
摘要:
An electrooptic element includes an optical waveguide layer made from a ferroelectric material and having a polarization inverted region of a predetermined shape having an optical incidence face and an optical exit face, and an upper electrode layer and a lower electrode layer formed on a top face and a bottom face of the optical waveguide layer, respectively, in which the ferroelectric material is magnesium-oxide-doped lithium niobate, and at least one of the optical incidence face and the optical exit face of the optical waveguide layer is formed in parallel with a crystal face of the ferroelectric material.
摘要:
An electrooptic element includes an optical waveguide layer made from a ferroelectric material and having a polarization inverted region of a predetermined shape having an optical incidence face and an optical exit face, and an upper electrode layer and a lower electrode layer formed on a top face and a bottom face of the optical waveguide layer, respectively, in which the ferroelectric material is magnesium-oxide-doped lithium niobate, and at least one of the optical incidence face and the optical exit face of the optical waveguide layer is formed in parallel with a crystal face of the ferroelectric material.