Abstract:
The present invention provides an automatic method, in a management node of a radio communication network, of service coverage management in the radio communication network, in which a radio management function is used for continually managing radio transmissions within the radio communication network and where the operation of the radio management function is determined by at least one control parameter, in which at least one of a radio environment measurement mapping or a performance indicator mapping of the radio communication network is analysed to determine a service coverage mapping of the radio communication network; a new value for at least one control parameter for the radio management function in order is generated to optimise the service coverage of the radio communication network; and the new value for the or each new control parameter for the respective radio management function in the network is distributed.
Abstract:
A system a core (104), an edge node (102, 103) and a method are provided for congestion handling in a packet switched network domain. In case of congestion overload is measured, the data packets in proportion to the overload are marked and the signaled overload is stored. At least one egress node (103) receives marked and not marked packets, decodes and counts the overload from the marked packets in a counting interval. Congestion report messages are sent to ingress nodes (102) where flows are terminated. A core node (104) comprises a storage means (314) taking into account the previously signaled overload, which are already being handled in a congestion handling control loop. An edge node (103) comprises means for adding new flows to the set of affected flows, means for identifying affected flows to be terminated so that the number of identified affected flows should generate together traffic equal to the overload, and means for removing flows to be terminated from set of affected flows. In an advantageous embodiment the market module (315) applies a hysteresis algorithm with a higher bound used to detect congestion and to trigger the marking of user data packets in proportion to the measured overload, and a lower bound used as the reference to measure the overload ratio.
Abstract:
The present invention relates to a method and an arrangement for controlling the user plane of a UMTS Terrestrial Radio Access Network, UTRAN, comprising a first edge node connected via a Transport Network Layer to a second edge node, by using Transport Network Layer, TNL, signalling. A radio link is set up by using the Node B Application Part between the first and second edge nodes of the UTRAN, RSVP-TE based TNL signalling messages are transmitted between said first and second edge nodes for each TNL flow, and each TNL flow is identified by using RSVP-TE messages, wherein the object SESSION and SENDER_TEMPLATE comprises an IP based 5-tuple flow information, which is adapted to be used as a TNL flow identity.
Abstract:
Reducing congestion in an IP domain wherein congested data flows arriving at an egress edge node of the network are identified. Total congestion represented by the congested flows is determined, and a congestion extent notification is sent from the egress edge node to its ingress edge node peer. The congestion extent notification includes information regarding the total congestion and is sent on a per-class basis. Congested core routers in the network insert DSCPs into data packets passing through them to enable the egress edge nodes to identify the affected flows. The core routers may also send congestion metric messages, designed to follow the same path as the marked packets, to inform the egress edge nodes of the extent of congestion. In an alternative method, the egress edge nodes inform their ingress peers that congestion is present, without initially identifying the extent. The ingress edge node sends a query downstream with a congestion metric.
Abstract:
A method of routing packets between nodes of a packet switched network, the method comprising receiving a packet at a first node, the packet comprising routing information and payload data, sending said routing information to a second node in the routing path via a first transmission medium having a relatively high transmission speed, and sending said payload data to said second node via a second transmission medium having a relatively low transmission speed. Upon receipt of said routing information, said second node is able to prepare or begin preparation for onward routing of the packet in advance of receipt of said payload.
Abstract:
A multiservice IP network and a method are described herein that use an enhanced QOS message which makes it possible for an IP router to reserve resources for and admit a high priority traffic flow without needing to terminate an existing low priority traffic flow. In accordance with the present invention, in the event an emergency reservation request arrives at an IP router and there are not enough resources to support the high priority traffic flow, then the IP router reduces the reservation of one or more low priority traffic flows to a reduced level. The IP router also sends a notification message to the sender indicating that the reservations have been reduced. Thereafter, the high priority traffic flow can be admitted. As such, if there is enough adaptive traffic in the multiservice IP network, then the low priority calls need not be terminated instead only the resources are reduced to a lower but still acceptable QoS level. And, when traffic conditions improve the reduced reservations can be increased back to the original level.
Abstract:
A network node for reserving resources for data flows in a communication network. The node detects a request for resource reservation for a new data flow and computes an admission test count based on descriptors of the new data flow and reservation counts, which represent reservation functions of descriptors of previously admitted data flows and which specify resources of the admitted data flows. The new data flow is admitted if the admission test count is smaller than a maximum allowable count. The reservation counts are then updated based on the descriptors of the new data flow. A plurality of admission formulas may thus be used to maintain aggregated reservation counts for data flows, the number of counts being independent from the number of flows.
Abstract:
The invention relates to techniques for traffic handling in congestion situations in a point-to-multipoint (‘PTM’) enabled network. A method embodiment of the inventive technique is performed in an egress node of the network and comprises the steps of detecting marked packets, the marking being indicative of a congestion situation in a core node of the PTM-enabled network; selecting, based on the detected markings, a particular PTM flow from one or more PTM flows passing the egress node for termination; and indicating the selected PTM flow in an upstream direction of the selected flow.
Abstract:
A module for routing packets of first and second optical signals comprising first and second inputs (A,B) for receiving the first and second optical signals and first and second outputs (C,D) for the optical signals. The module comprises optical switching means (8) for switching the first optical signal and the second optical signal to either one of the two outputs (C,D), and a correlator module (7). The correlator module comprises at least two optical correlators (9,10,11,12). The correlator module (7) is arranged to generate control signals for controlling the switching means (8) based on destination data in packets of the first and second signals such that if packets of the first and second optical signals overlap, the switching means directs the packet that was received first to the output (C,D) indicated by the destination data of that packet and the overlapping subsequent packet is directed to the other output (C,D) or blocked. A module is advantageous because there is no need to convert the optical signal to the electronic domain and packet contention is avoided without synchronisation or scheduling of the packets of the optical signals because, for overlapping packets, the packet that is received first is given priority with the later packet either sent to the other output, whether or not this is the correct output for the packet, or blocked.
Abstract:
A network node (e.g., edge node, muter, network management node) is described herein that implements a method for providing fast and exact traffic information during normal traffic fluctuations in a network and also during a sudden and big change in the traffic conditions of the network. In one embodiment, the method monitors a parameter of traffic flowing within a network by: (1) measuring a traffic parameter (mi); and (2) determining whether a value of the measured parameter (mi) is significantly different than a value of an average of previously measured parameters (avgi-1); (2a) if yes, then quickly adapting a value of an updated average of measured parameters (avgi) to be closer to the value of the measured parameter (mi); and (2b) if no, then slowly adapting the value of the updated average of measured parameters (avgi) to be closer to the value of the measured parameter (mi).