Abstract:
A computer-implemented method for classifying voxels. The method includes rendering a plurality of images associated with a three-dimensional model. The method also includes identifying one or more pixels associated with the plurality of images that correspond to a voxel. The method further includes classifying the voxel as either external to the three-dimensional model or internal to the three-dimensional model based on the one or more pixels.
Abstract:
A computer-implemented method for computing skinning weights. The method includes traversing one or more paths from a first voxel included in a voxelization associated with a three-dimensional model to a second voxel included in the voxelization. The first voxel intersects a first influence included in the three-dimensional model. The second voxel intersects a target vertex associated with the three-dimensional model. The voxelization includes a set of interior voxels. The first voxel and the second voxel are included in the set of interior voxels. The method also includes identifying a first path included in the one or more paths that is associated with a first distance value related to the second voxel that indicates that the first path represents the shortest distance between the first voxel and the second voxel. The method further includes assigning a skinning weight to the target vertex based on the first distance value.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for passing actionable information between different buildings to facilitate building management without human intervention include, in one aspect, a method including: determining, in a building information modelling (BIM) system of a first building, a set of rules defining actions to be taken by a building automation system of the first building in response to a defined set of remote information received from a BIM system of a second building, the set of remote information corresponding to one or more sensors in or associated with the second building; receiving data from the BIM system of the second building in accordance with the set of remote information; and using the building automation system of the first building to automatically change configuration, use, or operation of the first building in response to the received data in accordance with the set of rules.
Abstract:
One embodiment of the invention disclosed herein provides techniques for transferring attributes from a source animated character to a target character. A character attribute transfer system identifies a first set of markers corresponding to the source animated character. The character attribute transfer system identifies a second set of markers corresponding to the target character. The character attribute transfer system generates a geometric correspondence between the source animated character and the target character based on the first set of markers and the second set of markers independent of differences in geometry between the source animated character and the target character. The character attribute transfer system transfers a first attribute from the source animated character to the target character based on the geometric correspondence.
Abstract:
An example method includes, responsive to identifying an object and a reflection surface: identifying a reflection incidence point on a current position of the reflection surface; reprojecting the reflection incidence point using a surface motion vector of the reflection incidence point to determine a previous reflection incidence point. The previous reflection incidence point is a reflection incidence point on a previous position of the reflection surface. The method further includes, reprojecting a reflected point (a reflection of the object in accordance with the reflection surface's current position) using a motion vector to determine a previous location of the reflected point on the previous position of the reflection surface; projecting a current view point onto the previous position of the reflection surface to produce a previous view point; and presenting to a user a presentation of the previous location of the reflected point on the previous position of the reflection surface.
Abstract:
One embodiment of the invention disclosed herein provides techniques for voxelizing a mesh representation associated with a three-dimensional model to generate a volumetric model. A model filling engine associated with a voxelization system identifies a first voxel included in a voxel grid array that intersects with the mesh representation. The model filling engine selects a second voxel at an exterior boundary of the voxel grid array that is not identified as a boundary voxel. The model filling engine marks the second voxel as an exterior voxel. The model filling engine marks all unmarked voxels that are adjacent to the second voxel as exterior voxels. The model filling engine marks all remaining voxels as interior voxels. A model finishing engine associated with the voxelization system generates a volumetric model based at least in part on the first voxel.
Abstract:
Methods, systems, and apparatus, including medium-encoded computer program products, for passing actionable information between different buildings to facilitate building management without human intervention include, in one aspect, a method including: determining, in a building information modelling (BIM) system of a first building, a set of rules defining actions to be taken by a building automation system of the first building in response to a defined set of remote information received from a BIM system of a second building, the set of remote information corresponding to one or more sensors in or associated with the second building; receiving data from the BIM system of the second building in accordance with the set of remote information; and using the building automation system of the first building to automatically change configuration, use, or operation of the first building in response to the received data in accordance with the set of rules.
Abstract:
One embodiment of the invention disclosed herein provides techniques for voxelizing a mesh representation associated with a three-dimensional model to generate a volumetric model. A model filling engine associated with a voxelization system identifies a first voxel included in a voxel grid array that intersects with the mesh representation. The model filling engine selects a second voxel at an exterior boundary of the voxel grid array that is not identified as a boundary voxel. The model filling engine marks the second voxel as an exterior voxel. The model filling engine marks all unmarked voxels that are adjacent to the second voxel as exterior voxels. The model filling engine marks all remaining voxels as interior voxels. A model finishing engine associated with the voxelization system generates a volumetric model based at least in part on the first voxel.